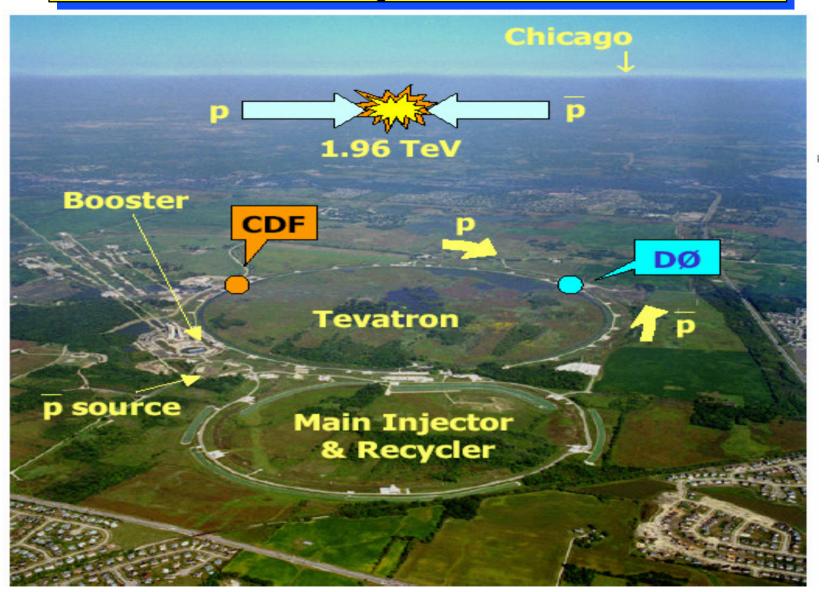
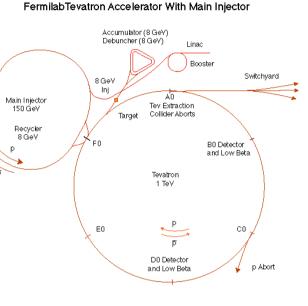

Tevatron Collider Overview

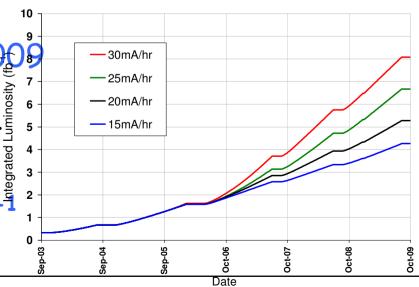

Giorgio Chiarelli Istituto Nazionale di Fisica Nucleare Sezione di Pisa With the help of many DO and CDF colleagues


More than just a Collider..

Tevatron-Introduction

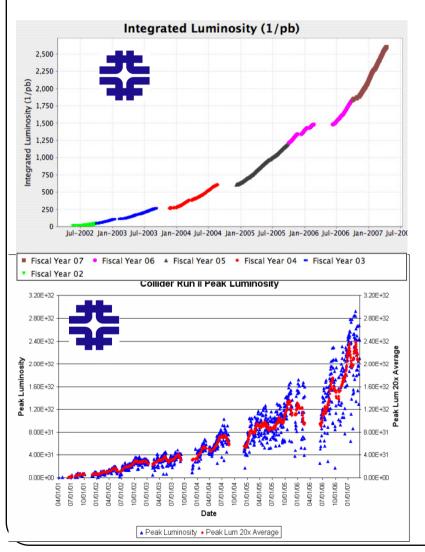
The Tevatron collider is an ensemble of accelerators.

"Run II is not a construction" project. Run II is a complex campaign of operations, maintenance, upgrades, R& D and studies." (D.Lehman)

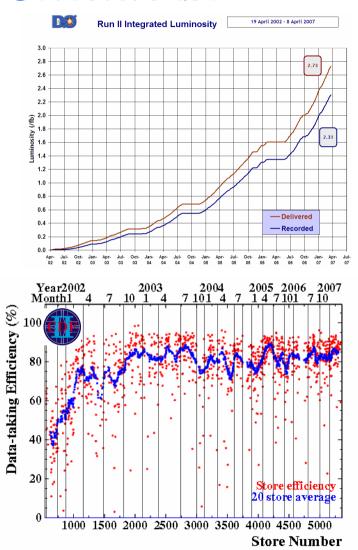


⇒4.4-8.5 fb⁻¹ by FY 2009 →More later
Record: 2.9x10³²cm⁻²s⁻¹

→ Record: 2.9x10³²cm⁻²s⁻


⇒Keep improving

⇒In one week 44.8 pb >record

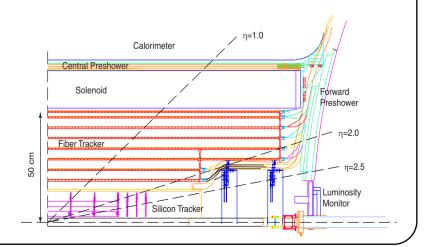


Data taking...2.9×10³²...

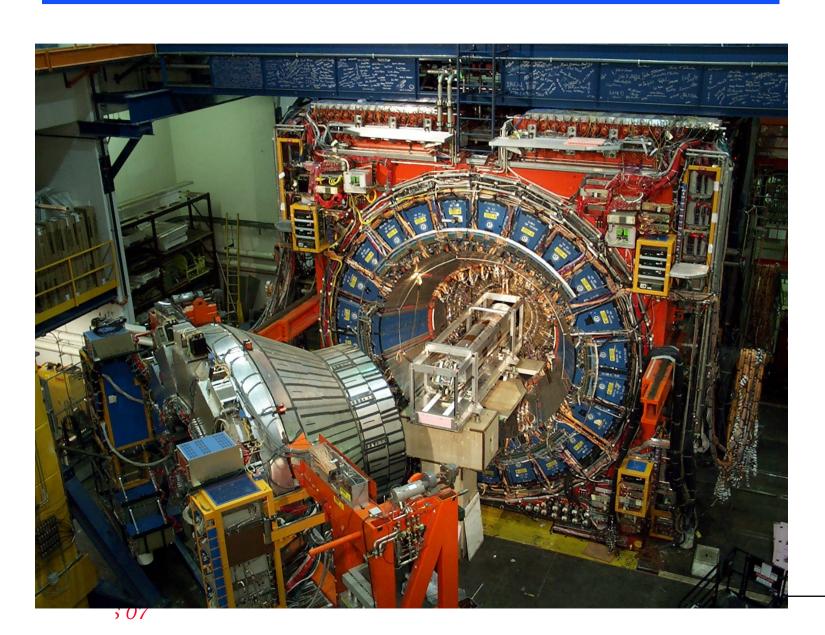
Accelerator delivers..

Detectors use:

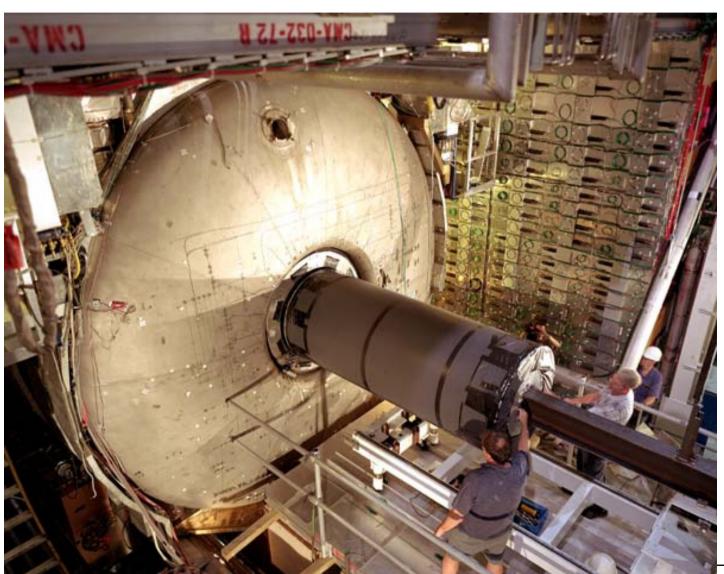
Two detectors

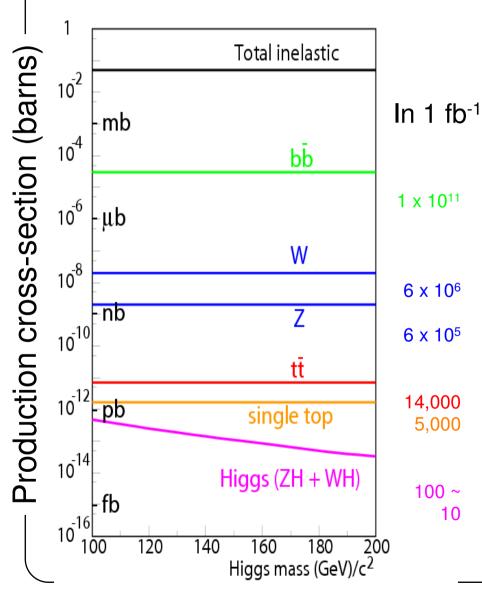


CDF underwent serious upgrades:


- Thew tracking system
 - ⇒COT, new silicon tracker (6-7 layers DS+1 SS)
- → New forward calorimetry
- Tracking at trigger level
 - ⇒Tracks at L1
 - ⇒Displaced from PV@L2

DO: change of philosophy


- → New tracking system
 - ⇒Based on a 2T solenoid
 - ⇒New 8 layers fiber tracker
 - ⇒Secondary vertices capability (SVX)
 - ⇒Recently added (IIb) an extra layer of silicon sensors
- Timproved muon coverage
- □ Upgraded trigger (IIa, IIb)


Experiments: CDF

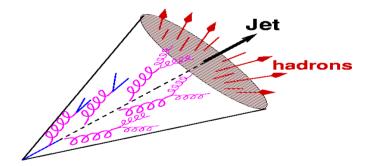
Experiments: DO

Tevatron Collisions I

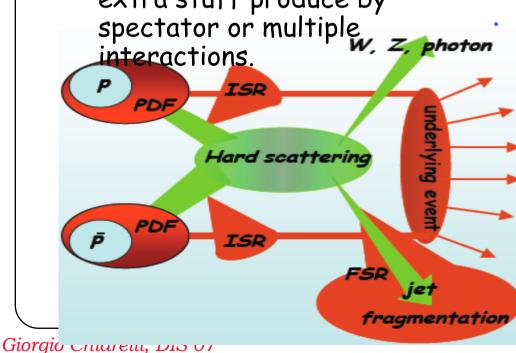
Two main areas

- → B Physics
- THigh" Pt Physics
 - ⇒SM (QCD)
 - ⇒SM(EWK)
 - \Rightarrow SM(Top)
 - ⇒Higgs, BSM
- Trigger and analyses being retuned to match the challenge
- As luminosity increases experiments are forced to deal with new challenges

At stake the capability to go down the ladder and explore the fb region


Giorgio Chiarelli, DIS 07

Tevatron Collisions II


The hard scattering is not all there is!

- ~ Parton Distribution Functions (PDF): fraction of (anti)proton carried by incoming partons.
- □ Underlying Event (UE): extra stuff produce by

- □ Initial and Final State Radiation (ISR, FSR): extra gluons radiating off the original/final partons.
- quark/gluons and recombination into hadrons reconstructed inside a cone.

All of these processes, and more, have an impact on what we measure

Some CDF results for Win 07

QCD

- b-bbar dijet production cross section (260 pb-1)
- rightharpoonup Z o b-bbar
- Dijet production cross section measurement (1.13 fb⁻¹)

B Physics

Lifetime measurements:

 \Rightarrow B+, BO, Bs and $\Lambda_{\rm B}$ (1fb⁻¹)

~ Rare decay searches:

 $\Rightarrow B^{+} \rightarrow \mu^{+}\mu^{-} K^{+}, B^{0} \rightarrow \mu^{+}\mu^{-} K^{*}$ $\Rightarrow B \rightarrow hh$

EWK

- Observation of WZ production
- Evidence for ZZ production
- → W mass, width

Top

- Top mass in all-jets channel
- Production cross section (lepton+isolated track)
- Search for W' using the single top sample
- Top Production Mechanism (gg vs qq)
- Top Charge

New Phenomena

- Search for New Particles Coupling to Z+jets (b'->Z+b) in 1.1 fb⁻¹
- SUSY trilepton combined limit 0.7 to 1 fb⁻¹
- High-mass dielectron (Z' search) 1.3 fb⁻¹

Higgs (fb⁻¹)

- → H→ττ SUSY Higgs
- → H→WW ME-based analysis
- ~ ZH→IIbb 2D-NN and MÉT fitter analysis

Some results from DO

After ICHEP

- → B physics:
 - ⇒ LB lifetime in 1.3 fb⁻¹
 - ⇒ Search for Bs oscillations in 1.2 fb⁻¹
- C QCD
- → EWK
 - ⇒ Wg in 900 pb⁻¹
- → Top
 - $\Rightarrow \sigma(ttbar)$
- Searches
 - ⇒ GMSB SUSY
 - ⇒ Fermiophobic Higgs
 - \Rightarrow ZH

Winter 07

- → B Physics
 - \Rightarrow B_s $\rightarrow \mu\mu$ 2 fb⁻¹
- C QCD
 - ⇒ Triple jet differential cross section 1.1 fb⁻¹
- □ EWK
 - \Rightarrow Z γ * \rightarrow 4| 1 fb⁻¹
- → Top
 - $\Rightarrow \sigma(ttbar)$
 - → Dilepton
 - → L+jets
 - ⇒ Top mass
 - ⇒ Single top
- Searches
 - ⇒ 2nd generation LQ
 - ⇒ WH (many channels)
 - ⇒ Updated SM Higgs limit
 - $\Rightarrow H \rightarrow \tau\tau$

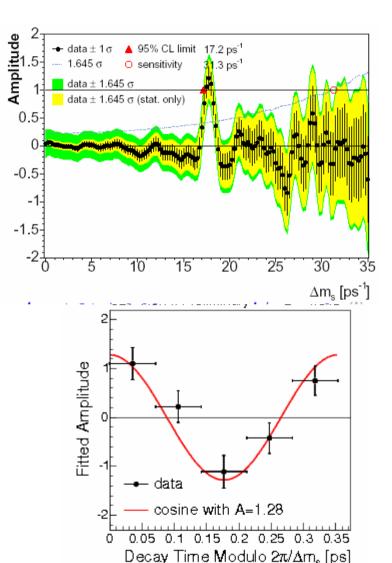
B Physics at an Hadron Collider

Thought to be almost impossible

- Exploits large cross section
 - ⇒Need tight selection at trigger level
 - ⇒Tracking capability at L1 and displaced track trigger at L2 at CDF
 - Challenge at high luminosity
- Some very recent results:
 - ⇒Bs oscillations [Observed by CDF with 1fb-1]
 - ⇒B→hh [1fb⁻¹]
 - $\rightarrow A_{CP}$ in B⁰ $\rightarrow K\pi$, B⁰_s $\rightarrow K\pi$
 - \rightarrow BF: B \rightarrow KK,B \rightarrow π K, B \rightarrow \Lambdap
 - ⇒Search for rare B decays [D0 with 2 fb⁻¹] ⇒Bs \rightarrow µµ, B_d \rightarrow µµ
 - ⇒ Measurement of B_c mass, new B Baryons states, excited states

Bs oscillations

D0 has a limit (900 pb⁻¹)

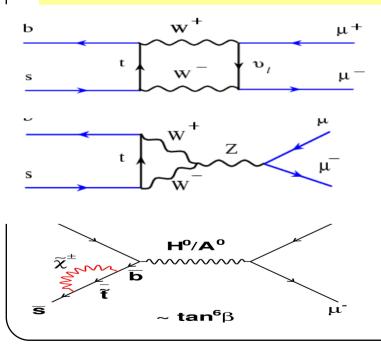

 \bigcirc 14.9 \triangle m_s<21 ps⁻¹ (90% CL)

CDF, with 1fb⁻¹ presents

Observation of B_s
 Oscillations

PRL 97, 242003 2006

- $^{\circ}\Delta m_s$ =17.77±0.10(stat)±0.07 (syst) ps⁻¹ : > 5 σ observation
- Same data set used for previous (spring 06) limit
 - ⇒Improved selection
 - ⇒Improved analysis technique
 - ⇒ A lot of efforts

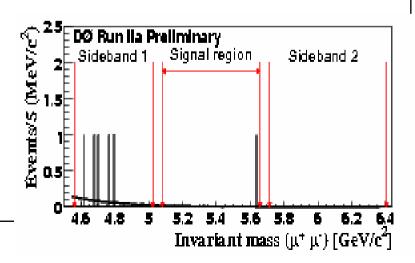


Rare decays as window to new physics

Some decays are predicted with BF 10⁻⁹ in the SM but have a potentially much larger rates in SUSY models

$$BR(SUSY) \propto BR(SM) \cdot \frac{m_b^4 \cdot (\tan \beta)^6}{m_{H^0}^4}$$

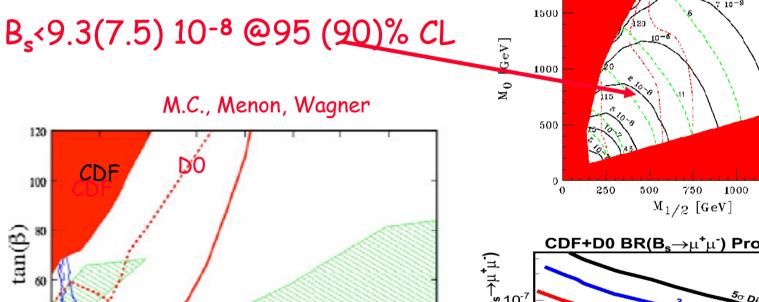
DO new result with 2 fb-1

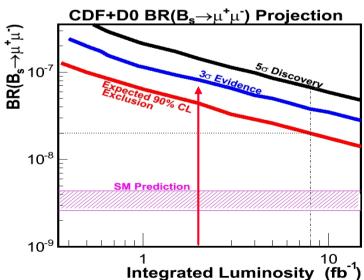

 \circ 3 events (2.3+-0.7 exp.)

Not yet combined with CDF 0.8 fb-1 CL limits:

 \Rightarrow B_s<10(8) 10⁻⁸ 95(90) % \Rightarrow B_d<2.3(2) 10⁻⁸ 95(90) %

→ To be updated soon..


Run IIa data taking (1.3 pb⁻¹) 1 evts, 10.8±0.2 exp



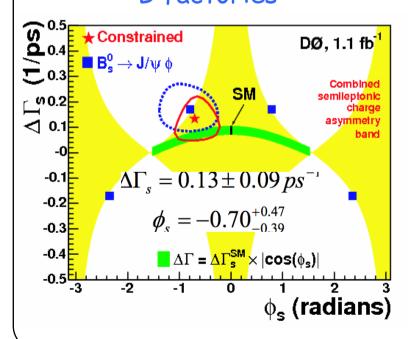
SUSY limits-examples

 $M_A(GeV)$ M. Carena (**Moriond 2007**)

 $\tan \beta = 50$, $A_0 = 0$, $\mu > 0$, $m_1 = 175$ GeV

1250

1500



Lifetimes, masses...new states

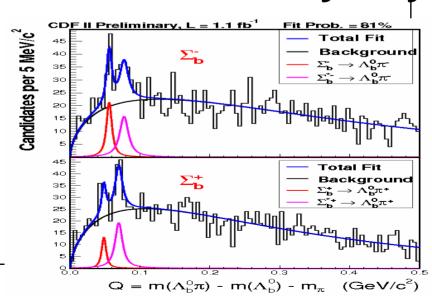
DO

- $\mbox{\ensurement}$ single measurement of $\tau_{\mbox{\scriptsize Bs}}$ using s.l. decays
 - \Rightarrow Combination of some measurements of its own with the Δm_s from CDF and measurements from B factories

Study of B states:

- B_c mass and properties
- $^{\frown}$ New measurement of $\Lambda_{\rm B}$ lifetime (1 fb⁻¹)

```
⇒ DO:


→1.28±.11±.09 ps (sl)

→1.3 ±.14±.05 ps (exc)

⇒ CDF

→ 1.5±0.77±0.012 ps
```

 \bigcirc CDF: Observation of $\Sigma_{\mathbf{B}}$ and $\Sigma_{\mathbf{B}^*}$

High P_T Physics

Need to define a clear set of physics objects

- Jets
- Tigh pt charged lepton
- ~ neutrinos
- → B tagged jets
 - ⇒Displaced tracks
 - ⇒Soft lepton id

High mass objects (top, Higgs, New particles) decays into jets, leptons (charged and neutral)

~ Challenge: reconstruct initial parton state

QCD Physics

Basics for any possible analysis:

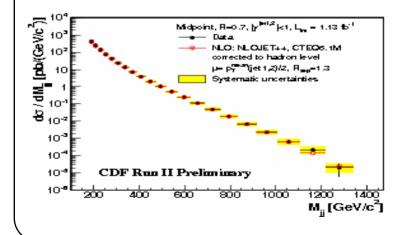
- → Jets carry information about QCD, PDF, couplings
 - ⇒Et and angular distributions, fragmentation
 - ⇒Comparison to pQCD predictions
- Measuring jets means understand calorimetry and tracking
- ~ Can be tools (or background) in many physics topics

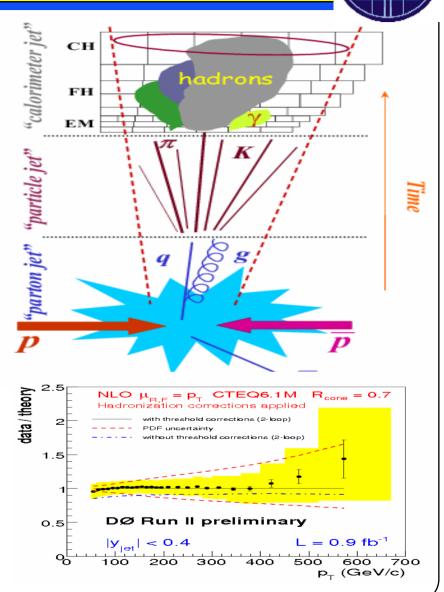
Results:

- ☐ Inclusive jet cross section (inherited discrepancy with pQCD from Run I)
- → Jet fragmentation
- Dijet mass x-section
- Underlying events
- → Diffraction

See talks by

O. Atramentov, J. Cammin, M. D'Onofrio, L. Pinera, C. Mesropian, S. Vallecorsa

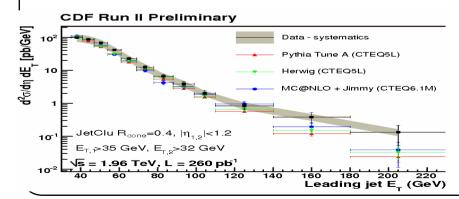

Inclusive jet Physics



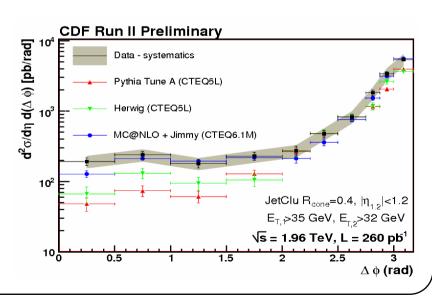
Jets are a key probe

- Fundamental in measuring top mass, search for new physics, test of the SM..
- ~ Can show early appearance of new physics!

Large effort by both experiments in understanding production and properties




Less inclusive states



With larger statistics and improved detectors more and more results from prompt photons:

- \sim D0 measures the triple γ —jet differential cross sections in 1 fb⁻¹
- CDF exploits smaller data sample collected with trigger devoted to detect secondary vertices and studies bbar

EWK Tests of the SM

Basics for top, searches

- Decay, associated production
- To Often background for rare processes
- Tiscrepancy from SM would signal new physics

Both CDF and DO measure

- Tinclusive and differential production cross section (PDFs..)
- ~ Multiboson production (WW, ZZ, WZ, Wγ, Zγ: really at the boundaries of the Tevatron reach

```
⇒W7:
```

 \rightarrow First observation by D0 (3.3 σ)

 \rightarrow CDF WZ at 6 σ

⇒WW production observed with 0.35 fb⁻¹

→CDF, DO

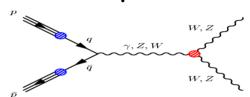
 \Rightarrow CDF evidence for ZZ at 3 σ (winter 07)

 \Rightarrow Z γ , W γ test of trilinear gauge coupling \Rightarrow Z γ measured by CDF (0.35 fb⁻¹) and DO (1 fb⁻¹)

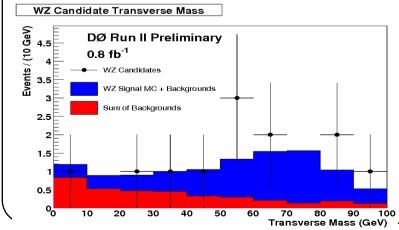
→ Wy: D0 measures an angular distribution looking for the radiation amplitude zero.

¬ CDF measures W mass and width

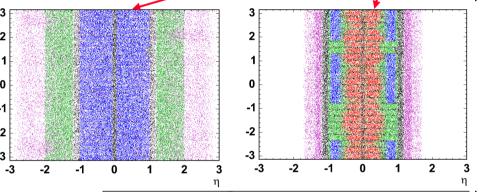
See talks by S.Malik, Y.Maravin, A.Robson



ZZ, WZ


Intermediate steps towards WH, WZ→IIIv has a NLO

 σ =3.7±0.1 pb



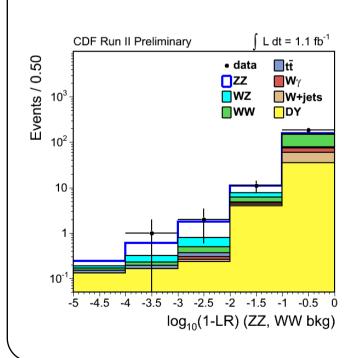
D0 presented a 3.3 σ
 evidence in Summer 06

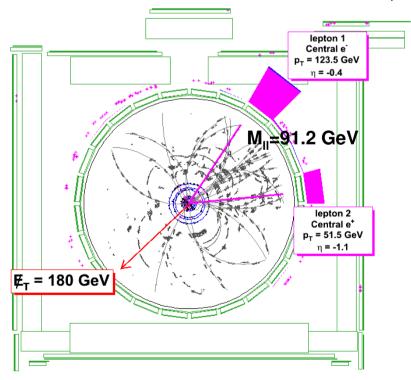
 σ =3.98^{+1.91}_{-1.53} (stat+sys)pb

Winter 07: CDF improved its analysis by extending acceptance for e and μ

Source	Expectation \pm Stat \pm Syst \pm Lumi	
Z+jets	$1.22 \pm 0.27 \pm 0.28 \pm$ -	
ZZ	$0.89 \pm 0.01 \pm 0.09 \pm 0.05$	
$Z\gamma$	$0.48 \pm 0.06 \pm 0.15 \pm 0.03$	
$t\bar{t}$	$0.12 \pm 0.01 \pm 0.01 \pm 0.01$	
WZ	$9.79 \pm 0.03 \pm 0.31 \pm 0.59$	
Total Background	$2.70 \pm 0.28 \pm 0.33 \pm 0.09$	
Total Expected	$12.50 \pm 0.28 \pm 0.46 \pm 0.68$	
Observed	16	

 $\sigma(WZ)=5.0^{+1.8}_{-1.6}(stat.+syst.)$ pb


Prob(background only) < 1.5×10^{-7} (5.1 σ)

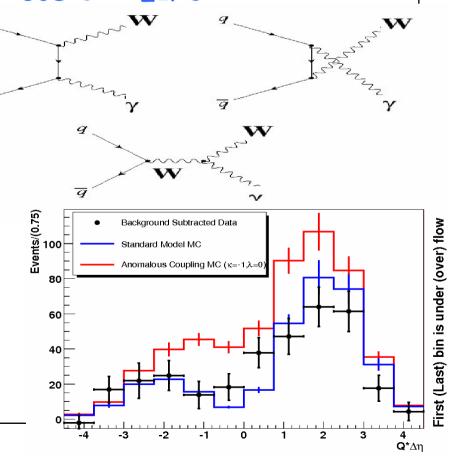

ZZ

 \bigcirc CDF adds new channel (ZZ→IIvv) to summer 06 analysis and, in 1.4 pb⁻¹, finds

$$\Rightarrow$$
 σ =1.14^{+1.1}_{-0.8} (stat+syst) pb

Ζγ, Wγ

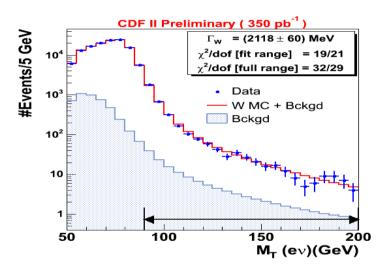
The gauge structure of the SM has a crucial test in the (destructive) interference in $W\gamma$

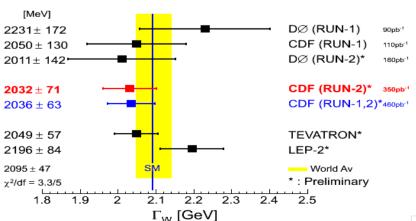

- The Both CDF and DO measured Zγ and Wγ cross section in 1 fb⁻¹
- CDF:

$$\Rightarrow \sigma(W+\gamma) = 19.1\pm2.8 \text{ pb}$$
$$\Rightarrow \sigma(Z+\gamma) = 4.9\pm0.5 \text{ pb}$$

rightharpoonup D0(E_T γ >7GeV, M_T(I γ ,MET)>90: rightharpoonup rightharpoonup D0(E_T γ >7GeV, M_T(I γ ,MET)>90: rightharpoonup rightharpoonup rightharpoonup D0(E_T γ >7GeV, M_T(I γ ,MET)>90:

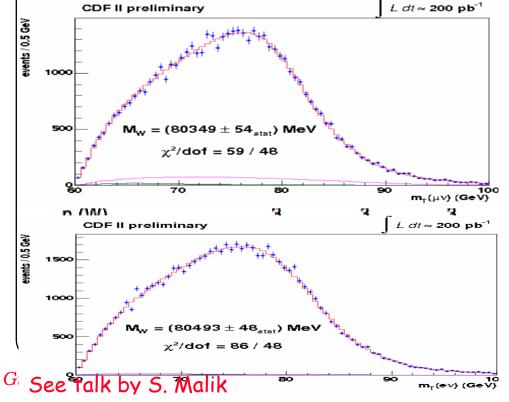
 σ σ (Z+ γ) =4.51±0.4±0.3(lum) pb


The interference among the three tree-level diagrams below create a zero in the $\cos \vartheta^*$ distribution at $\cos \vartheta^* = \pm 1/3$



W mass and width

CDF also measure the W width

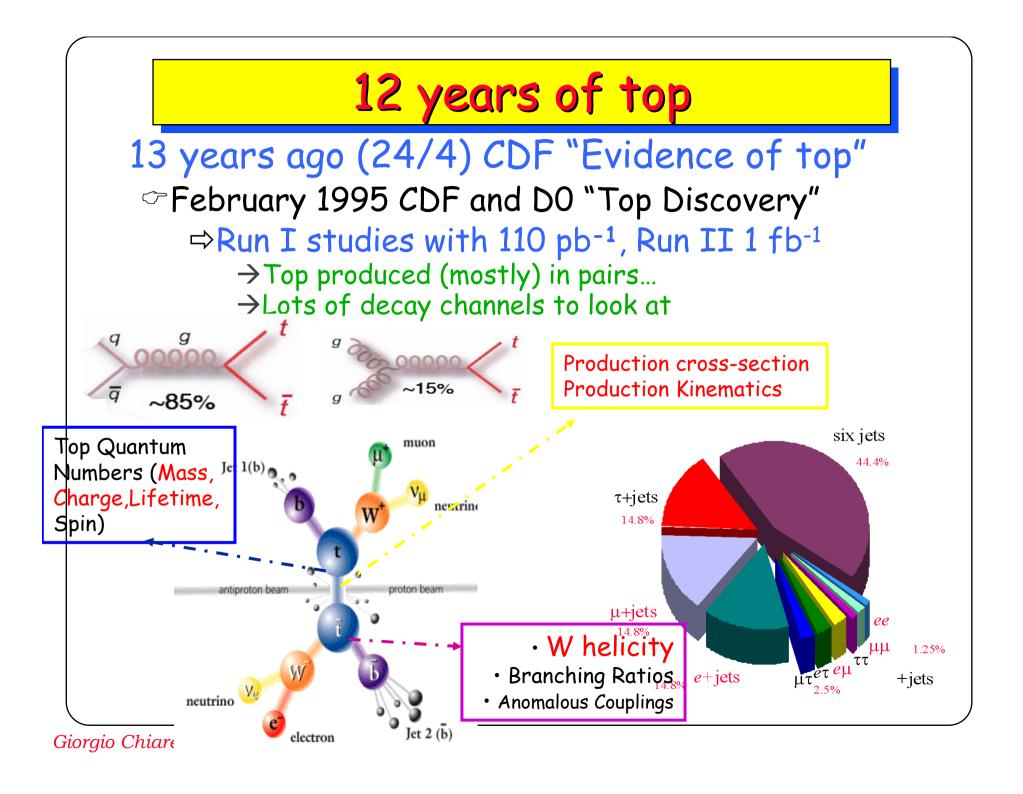

 $\Gamma_{\rm W}$ = 2032±71 MeV/c²

CDF presents the best single-experiment result, which is now statistically limited

 $MW = 80413 \pm 48 \text{ MeV/c}^2$

Top Physics

Top has a strong relation with EWSB

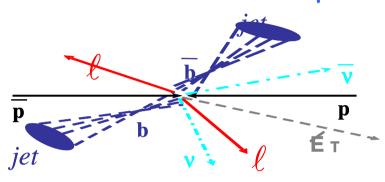

⇒Yukawa coupling ~1

Test SM and QCD prediction

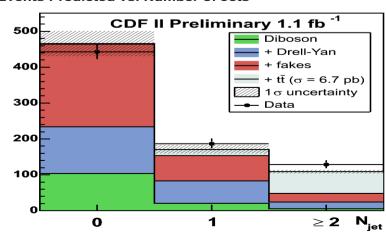
⇒Study of decay and production (Wtb vertex)

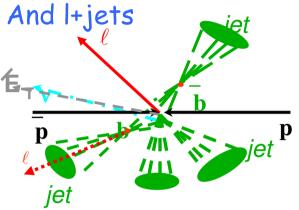
- Some studies performed in Run I
- → With 1 fb⁻¹ in Run II, performed precision measurements of:
 - ⇒ttbar production cross section
 - → Pre-requirement to select top-enriched samples
 - ⇒Top mass
 - >keeps improving
- The Many ongoing analyses
 - ⇒Fundamental: go from evidence (DO 2007) to discovery of EW top production (single top)
 - → Direct measurement of Vtb
 - → Critical test of the SM
 - ⇒Helicity meaurement, top charge etc.

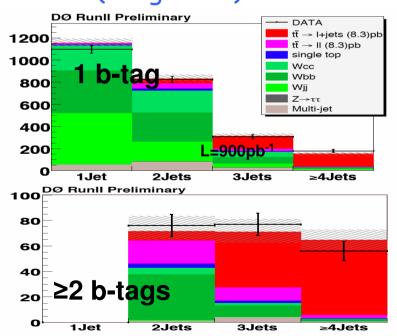
Talks by C.Gerber, S.Jabeen, J. Wagner



Top Production




Out of the different channels, select dilepton


to improve statistics use "identified lepton" + "isolated track"

Events Predicted vs. Number of Jets

Use tagging to enrich sample $\epsilon \approx 55\%$ (bckg 0.5%)

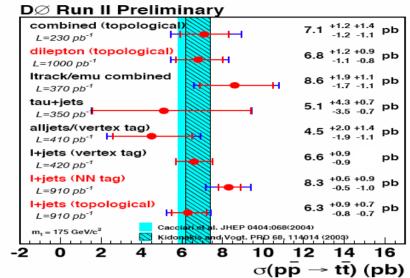
Top cross section

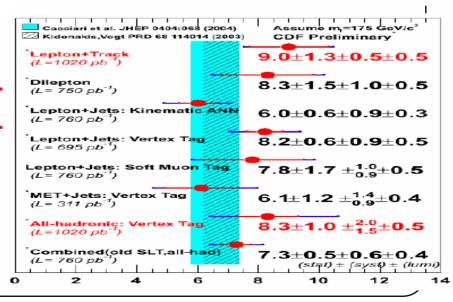
Exp.& Th. Errors comparable:

 σ (all had): 8.3±1+2_{-1.5}±0.5 pb

 σ_{tt} =6.8±0.6 pb (Kidonakis, Vogt) σ_{tt} =6.7+0.7-0.9 pb (Cacciari et al.)

Decay channel in dilepton more and more important, 1 fb⁻¹

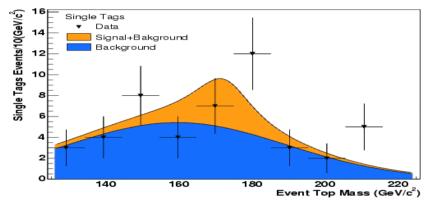

D0: σ_{tt} = 6.8^{+1.2}_{-1.1}(stat)^{+0.9}_{-0.8}(syst)±0.4(lumi)pb


CDF σ_{tt} = 9.0±1.3(stat)± 0.5(sys)±0.5(lum)pb

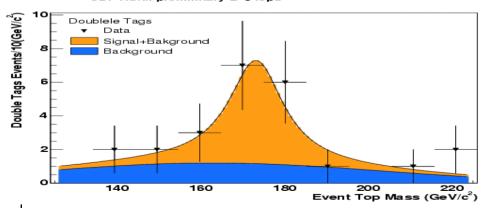
 \sim D0 shows two results in l+jets with 1 fb⁻¹:

$$\sigma_{\rm tt}$$
 = 8.3 $^{+0.6}_{-0.5}$ (stat) $^{+0.9}_{-1.0}$ (syst) ± 0.5 (lumi) pb

Experimental accuracy reaching (in 2 fb⁻¹?) theoretical predictions



Top Mass, present and future



In each decay channel we also measure M_{top}

CDF Runll preliminary L=943pb

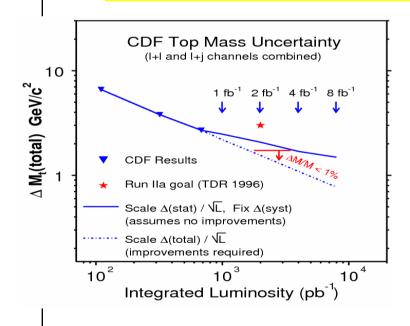
CDF Runll preliminary L=943pb⁻¹

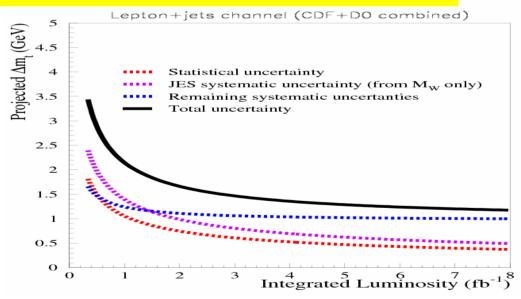
Great effort in understanding JES

New WA (March 07): Mtop= $170.9 \pm 1.8 GeV/c^2$

Top future (at the Tevatron)

CDF and DO can do well...


- → Improved B tagger
- JES improves with the dataset


Together we can do even better...

Possibility of better than1% accuracy

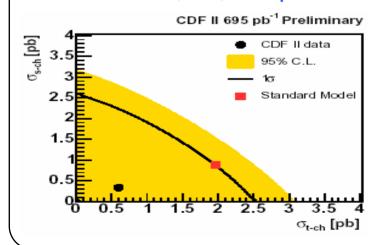
⇒Tevatron legacy?

Already better than the TDR [3 GeV/c2] (2fb-1)

Discussion on the meaning of a 1% accuracy (ongoing work with theoreticians)

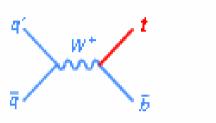
Single top

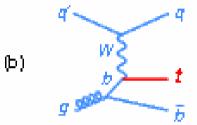
(国)

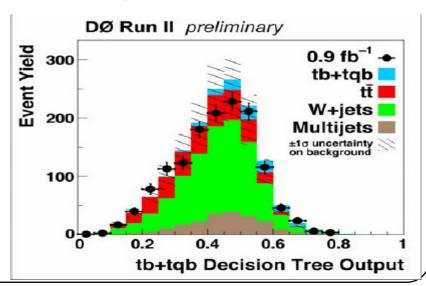

While top was detected in pairs, SM predicts that can be produced alone by EWK processes

Tiny production cross section in both channels:

 \Rightarrow s-channel(a)=0.88 pb


← 1 fb⁻¹ CDF set limit:

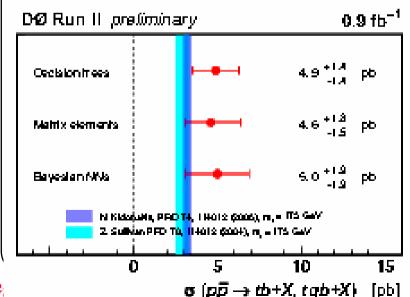

 $\Rightarrow \sigma(s+t) < 2.6 \text{ pb } @95\%CL$

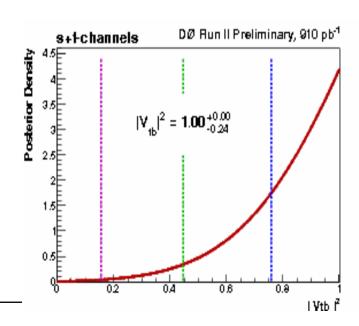

$\sigma \propto |V + b|^2$

Direct Vtb measurement

 \Rightarrow t-channel(b)=1.98 pb A.Robson, \sim D0 find a 3.4 σ signal in 0.9 fb^{-1} :

Single top

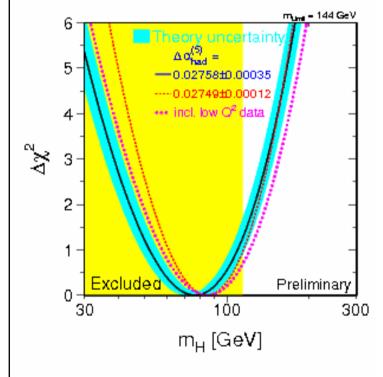

DO presented first evidence for single top this year


~Very challenging analysis

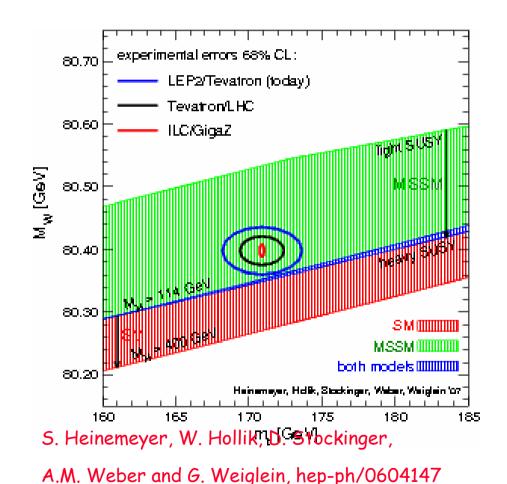
⇒Several statistical methods used

→One chosen (most powerful)

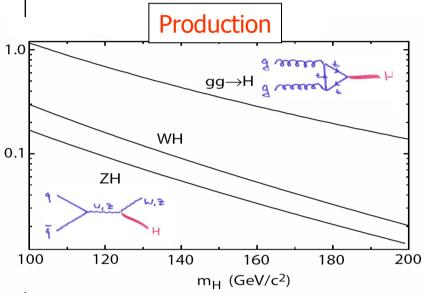
⇒
$$\sigma(s+t)=4.9\pm1.4$$
pb
⇒0.68<|Vtb|<1 @95%*C*L



Indirect bounds for the Higgs

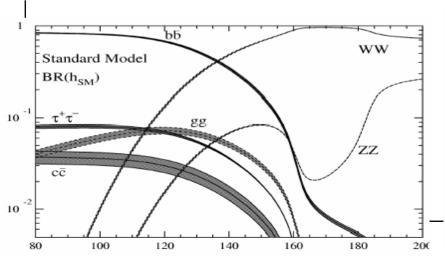


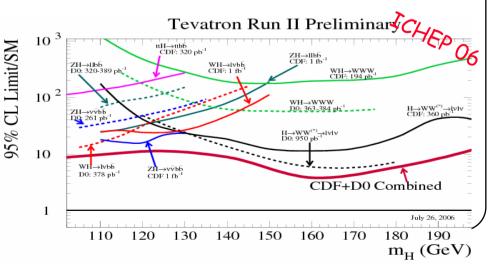
Tevatron is improving the understanding of the Higgs every day:


TEWKG March 2007

Can bring us beyond the SM?

A direct path towards the Higgs

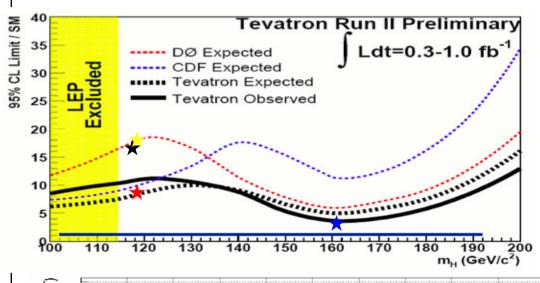

Light or heavy Higgs?

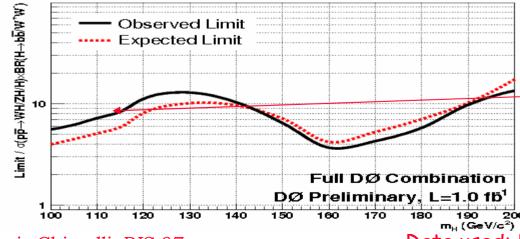


Strong b-tagging, large lepton coverage

~ X-section shows that we must use channels with large BF (no γγ)

```
m<sub>H</sub> Limit/SM
(GeV) Exp. Obs.
115 7.6 10.4
160 5.0 3.9
180 7.5 5.8
```

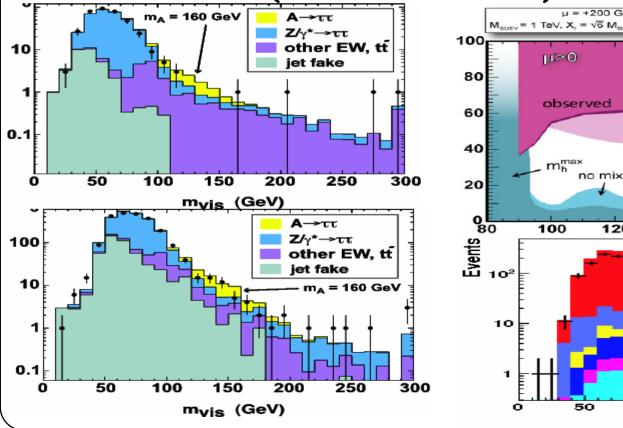



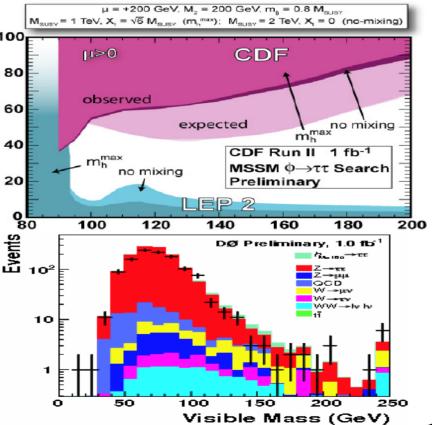

Ongoing effort

Last update in mid March (new CDF result on WW, ZH and from DO on WH, ZH→new)

Americain	CDE limit (18k-l)	DO limit (18b-1)
Analysis	CDF limit (1fb ⁻¹)	D0 limit (1fb-1)
	factor above SM	factor above SM
	observed (expected)	observed (expected)
ZH → vv bb @ 115		\ /
Technique: M _{jj}	16 (15)	40 (34)*
WH → I _V bb @ 115		
Technique: M _{ii}	26 (17)	★ 10 (9)
Technique: ME		★ 13 (10)
ZH → IIbb @ 115		
Technique: NN2D	* 16 (16)	33 (34)
H → WW → IvIv @ 160		
Technique: ΔΦ (I,I)	9 (6)	4 (5)
Technique: ME	★ 3.5 (5)	
	/	

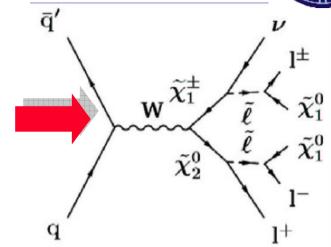
Néw, April 6 2007 (post Winter Conferences)

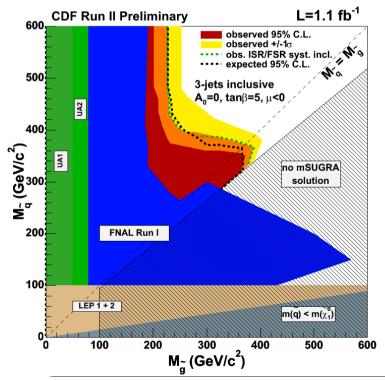


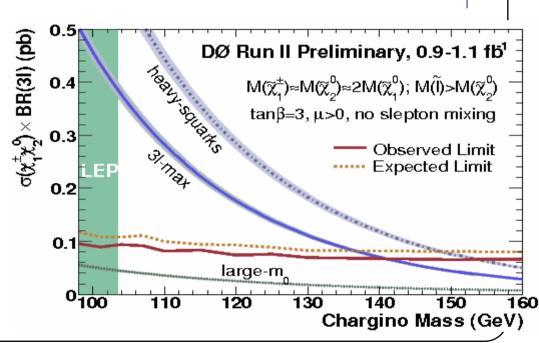

Non SM Higgs

Non SM Higgs(es) have sizeable decay rate to $\tau\tau$ pairs

Large efforts to bring up efficiency to trigger on tau events (and to detect tau)



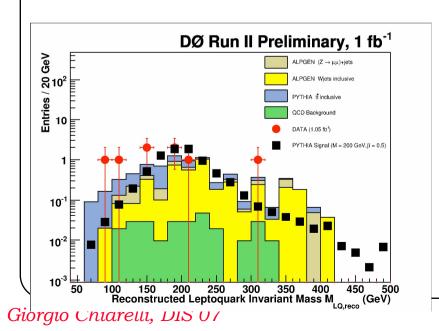

Chargino and Neutralino searches

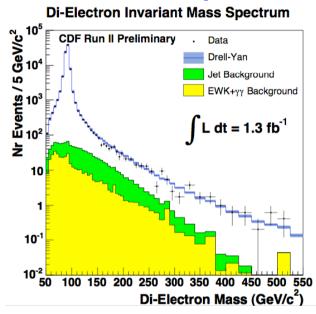


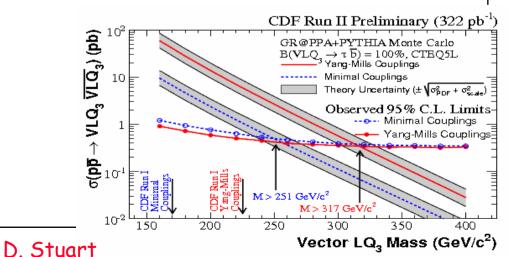
Both experiments look for SUSY signals

- Chargino and neutralino are produced with sizeable cross sections
- More difficult search for squarks and gluinos

More "exotic" searches




Drell Yan at large masses can be the key


 \bigcirc Z' \rightarrow ee at CDF

New limits on LQ

~2nd and 3rd generation LQ (pair produced at the Tevatron)

Conclusion-I

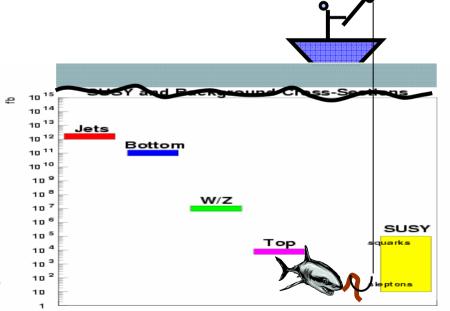
Tevatron experiments are digging a gold mine of 2fb⁻¹

- The accelerator complex is working well
 - ⇒ We now collect more data in one week than we used to gather evidence for top
- Tin the fb region many interesting processes at the boundary of the Standard Model
 - ⇒CDF and DO are well equipped to study physics in this region
- The interest of our program stays in the combination of an accelerator performing well with two well-understood detectors
 - → We considerably shortned the time from data taking to publication of results
 - ⇒19 contributions in parallel sessions will discuss the subtleties of many analyses

Conclusion II

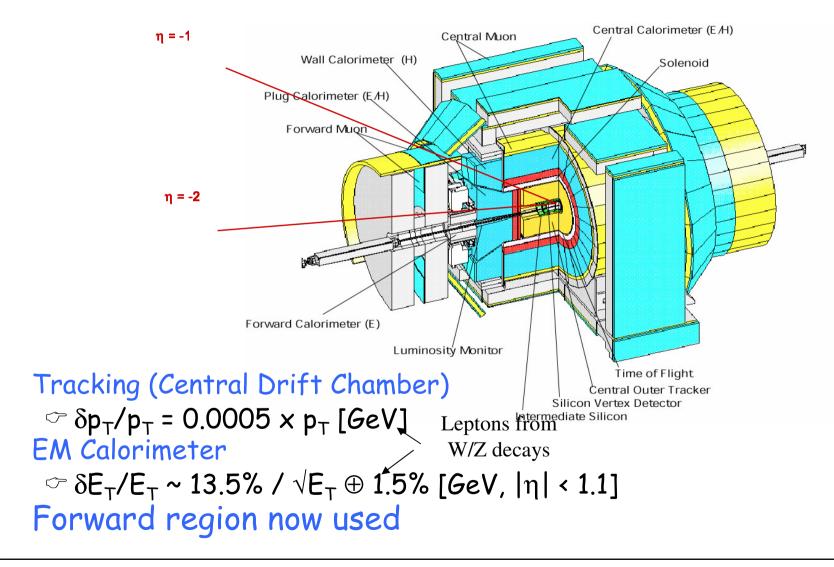
Detectors are performing well

○ Continuous effort


More and more challenging analysis are being performed

→ We are exploring a new region...

⇒The prize?



Many thanks to my CDF and DO colleagues and to the Organizers

CDF Experiment

Detector Status - big picture

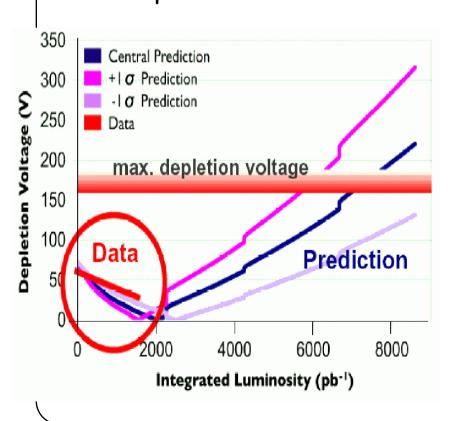
Silicon longevity

Texpect silicon detector to last through 2009

Tracking chamber (COT)

→ Aging not a problem, will be ok through 2009

High Luminosity running


- ~ Trigger
 - ⇒Requires constant attention
 - ⇒Upgrades on tracking and calorimetry fronts
- → DAQ
 - ⇒Built more bandwidth
- Physics
 - ⇒No significant effect up to 3e32

No showstopper foreseen through FY09

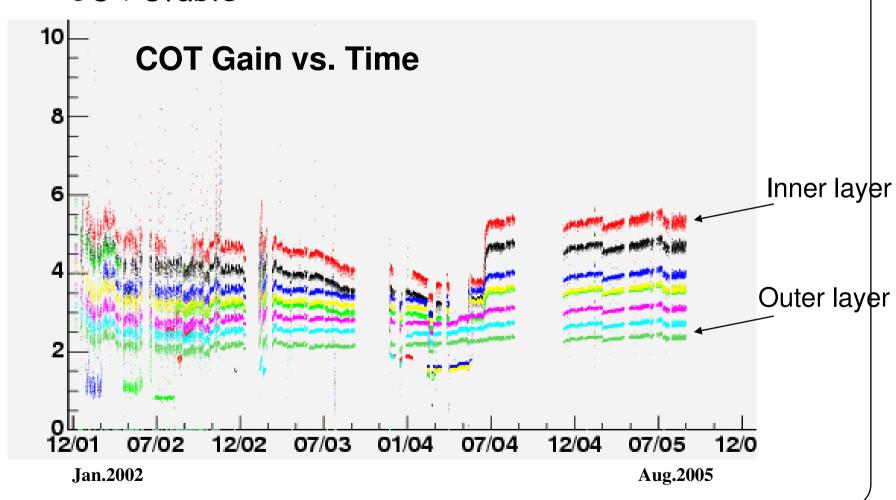
SVX survival

SVX LO is expected to invert at 2.5 fb⁻¹

We are following (so far) this prediction in its optimistic fashion

Technicality:
Vdep studied using both
bias vs noise scan and
bias vs collected charge
scan

→ Both results agree


Predizioni 2002

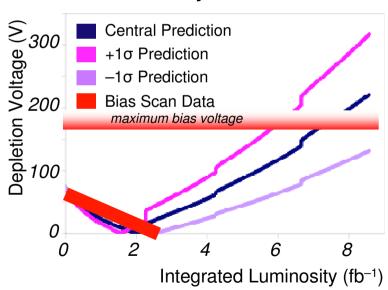
Layer	safe fb ⁻¹	cause
0 (55)	7.4	Vdep
1 (DS)	4.3(5.6)	S/N(Vdep)
2 (DS)	8.5(10.9)	S/N(Vdep)
3 (DS)	10.7	Vdep
4 (DS)	23(30)	S/N(Vdep)
5(DS)	14	Vdep
6(DS)	>40	n/a
7(DS)	> 40	n/a

COT Stability

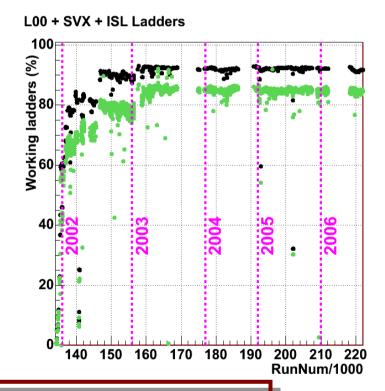
Since we inserted oxygen

←COT stable

Silicon Longevity - details


Bias voltage required to fully deplete Silicon sensors change with irradiation: decrease - type inversion - increase

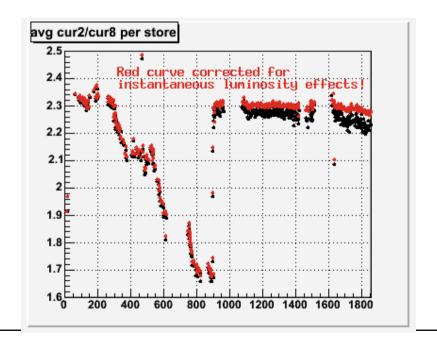
If depletion voltage larger than maximum safe bias voltage


 \circ cannot fully deplete sensors \rightarrow efficiency loss

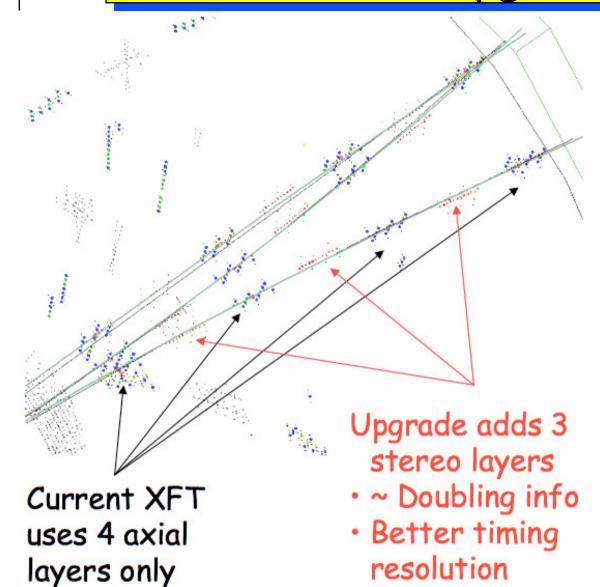
Bias scans show innermost SVX layer (most vulnerable) is hearing inversion

Closer to -1-sigma prediction SVX Layer 0

Model: S. Worm, Lifetime of the CDF Run II Silicon, VERTEX 2003



Silicon stable and expected to outlast 8 fb-1


Tracking Chamber - details

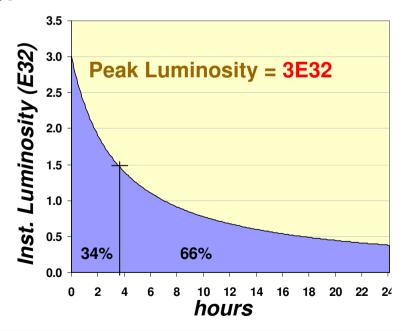
We addressed an aging problem of the Central Outer Tracker drift chamber in 2004

- Aging was found to be due to hydrocarbon growth on wires
- \sim Addition of O_2 to gas in June 2004 restored gain to original 2002 levels
- Possible new evidence of aging at the highest luminosities
 - ⇒ Minimal, if at all
 - ⇒ New gas purification system to clean re-circulated gas expected to be complete later this year
 - ⇒ Can also increase amount of oxygen added

XFT Upgrade

XFT originally only utilized axial layers

Upgrade adds 3 stereo layers to 4 layer axial XFT system

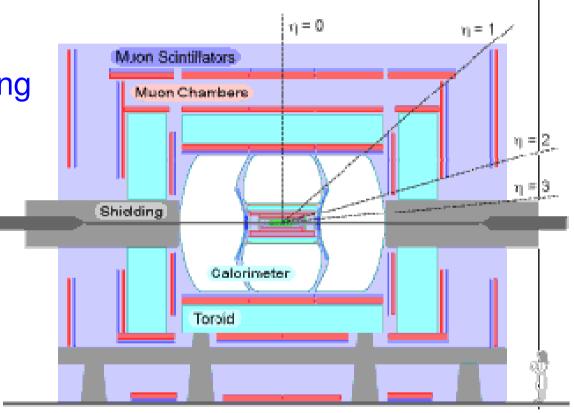

- better fake rejection
- better resolution

Trigger @ High Luminosity

Experience with luminosity at ~3e32

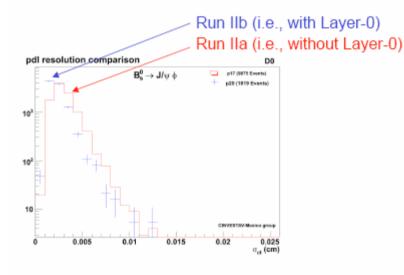
Giorgio Chiarel

- → Bulk of triggers [for Higgs] are fully functional to at least 3e32
- $\begin{cases} \begin{cases} \begin{cases}$
 - ⇒XFT and Cal upgrades to help deal with these
- Using "dynamic prescaling" to optimize physics and bandwidth
 - ⇒ High rate triggers have large prescale at high lum
 - ⇒ Prescales relaxed as banwidth becomes available at low lum
- ~ Most of the me is spent at helow ~1 5032

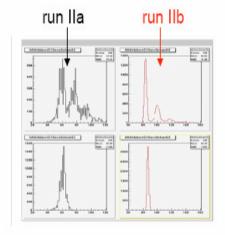


No serious issue but continuous watch is needed

Experiments: DZero (D0)


Features:

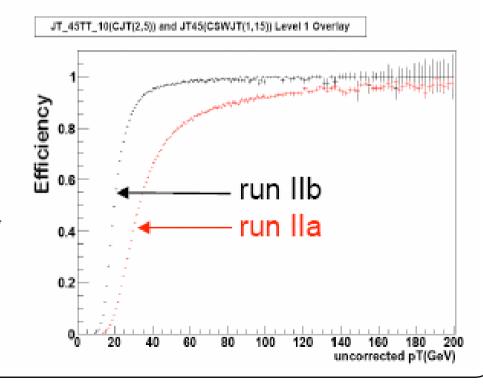
- Precision silicon vertexing
- Outer Fiber Tracker (r=0.5m)
- 2.0 T solenoid
- EM+HAD Calorimetry
- muon chambers $(|\eta| < 2.0)$


DO IIb upgrades

- Tracking: Layer-0 Silicon Detector
 - 19 bad channels (out of total of 12,288 channels)
 - Signal to noise is ~15 to 1
 - · No significant coherent noise
 - Improvement in decay length resolution

- Tracking: AFE-IIt readout boards for fiber tracker
 - Eliminates amplifier saturation at high luminosity
 - Substantially improves pulse height resolution
 - > optimization of VLPC bias voltages and reduced thresholds

❖ LED spectra

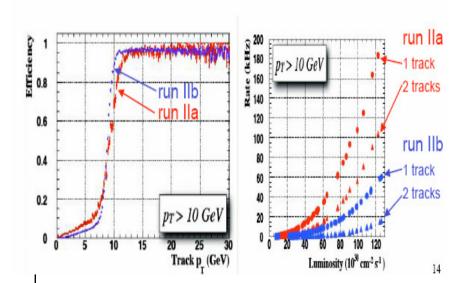


pedestals

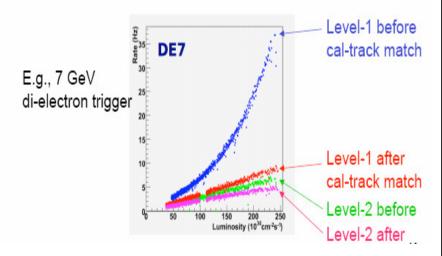
DO IIb upgrades

- Level-1 Trigger: Calorimeter
 - Complete replacement of 10 racks of run I electronics
 - Allows electron, tau and jet clustering at Level-1
 - Sharper turn-on curves!

e.g. 45 GeV jet trigger


DO IIb upgrades

Triggering at L1


- Level-1 Trigger: Tracking
 - More sophisticated algorithm requiring larger FPGAs

> sharper turn-on

lower fake rates

- · Level-1 Trigger: Calorimeter-Track Matching
 - Entirely new capability for DØ at Level-1
 - · formerly available only at Level-2
 - > Improved rejection and linearity with luminosity

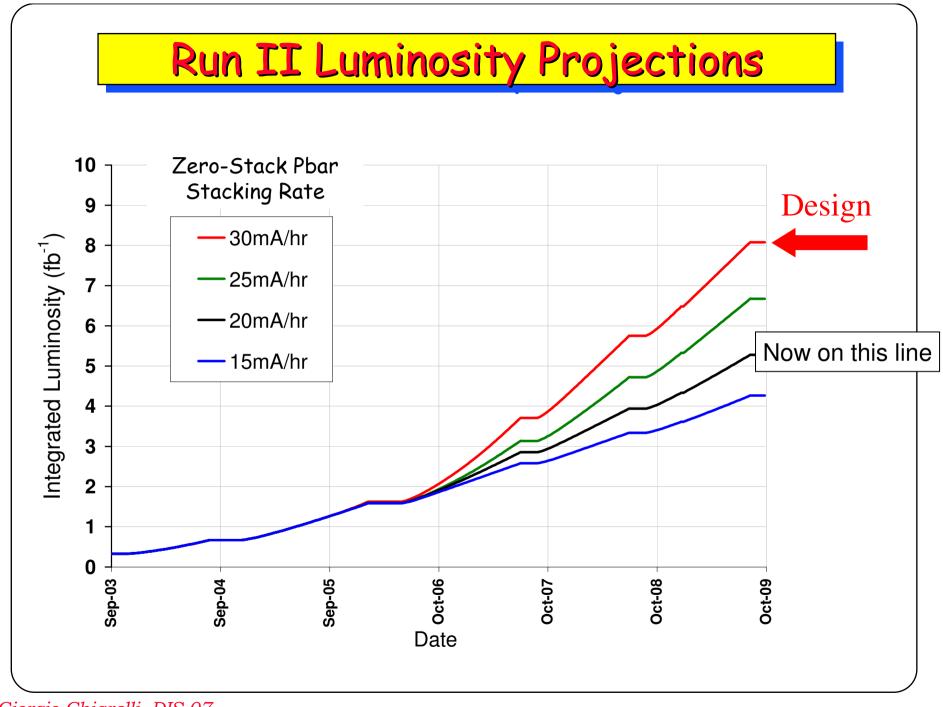
Openings of new physics capabilities!

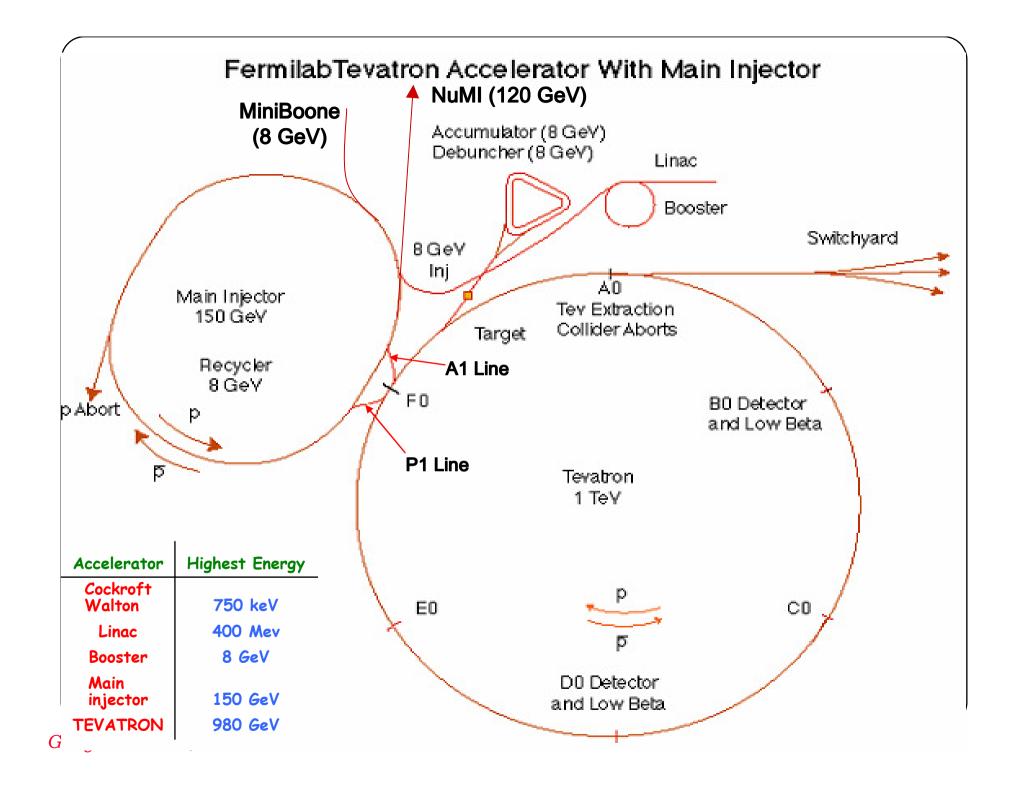
The machine

The basic is a good, working accelerator

→At the moment excellent performance of

→8 different machines (e-cooling included)


We are working with a goal of integrated luminosity


¬~8 fb-¹/esperimento by FY09
 ⇒ Dubbed Design
 and a "fallback position"

~4.5 fb⁻¹/experiment by FY 09

⇒a.k.a. "baseline"

I would like to thank the BD people for an outstanding job, and for their day by day efforts

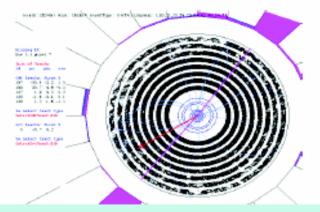
Luminosity Formula

$$L = \frac{fN_p N_a}{2\pi(\varepsilon_p + \varepsilon_a)\beta^*} H(\frac{\sigma_z}{\beta^*})$$

N = bunch intensity, f = collision frequency ε = transverse emittance (size), σ_z = bunch length H = "hour glass" factor (<1, accounts for beam size over finite bunch length)

Increasing the Luminosity Smaller β^* (new 28 cm β^* lattice in Sep 05) Larger N_a and smaller ϵ_a from Recycler + electron cooling

Projection for 30 mA/hr stack rate


Luminosity Parameters							
Phase	1	2	3	4	5	6	
Initial Luminosity	77.0	97.1	137.2	318.9	331.2	331.2	x10 ³⁰ cm ⁻² sec ⁻¹
Average Luminosity	33.8	45.3	64.0	128.0	132.9	132.9	x10 ³⁰ cm ⁻² sec ⁻¹
Integrated Luminosity / week	12.1	16.5	23.3	48.2	50.1	50.1	pb ⁻¹
Integrated Luminosity / store	3.0	3.6	5.1	10.1	10.5	10.5	pb ⁻¹
Number of stores / week	4.0	4.6	4.6	4.8	4.8	4.8	
Average Store Hours / week	100	101	101	105	105	105	Hours
Store Length	25	22	22	22	22	22	Hours
Initial Lifetime	6.4	6.4	6.4	5.0	5.0	5.0	Hours
Average Lifetime	12.8	12.3	12.3	9.9	9.9	9.9	Hours
HEP Up Time / week	110	113	113	117	117	117	Hours
sh Now, entering p	hase 4	2.6	2.6	2.6	2.6	2.6	Hours

Projection for 30 mA/hr stack rate

	Antip	roton]	Param	eters	/6	60% i	ncrease
Phase	1	2	3	4	5	6	
Zero Stack Stacking Rate	13.0	16.0	18.9	30.2	30.2	30.2	x10 ¹⁰ /hour
Average Stacking Rate	6.3	7.4	9.6	21.7	21.7	21.7	x10 ¹⁰ /hour
Stack Size transferred	158.2	163.8	211.5	476.5	476.5	476.5	$x10^{10}$
Stack to Low Beta	117.1	124.5	169.2	381.2	381.2	381.2	$x10^{10}$
Pbar Production	16.0	15.0	16.0	21.0	21.0	21.0	x10 ⁻⁶
Protons on Target	5.4	6.5	7.2	8	8	8	$x10^{12}$
Pbar cycle time	2.4	2.2	2.2	2	2	2	Secs.
Pbar up time fraction	0.75	0.75	0.75	0.9	0.9	0.9	
Initial Stack Size	15	15	0	0	0	0	$x10^{10}$
Stack Size at 1/2 Stacking Rate	150	150	150	150	150	150	x10 ¹⁰
	FY04		Ecool				
	SI	ip Sta	ck S	itack t	ail		

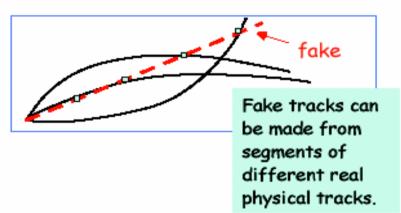
Saving Private Higgs

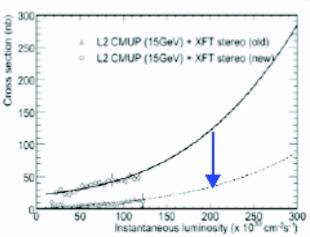
Maintain existing triggers Fake triggers at High Lumi

View of a Z → ee at low lum. looking down the beampipe

8 add. Interactions/crossing ~ 300 cm⁻²s⁻¹

Trigger σ for muons increases to third power!

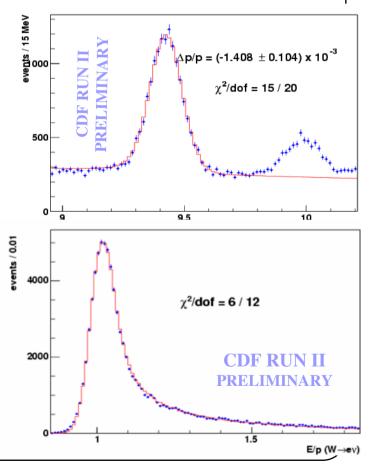

Defense:


Upgrading track trigger from 2-D to 3-D

Makes use of stereo tracking layers

Cuts down fake muons by factor of 5!

· Installation and commission this winter


W/mass measurement strategy

W mass obtained from fit of transverse mass $M_T(lv)$ use Z events to model detector response to hadronic recoil energy and calibrate the charged lepton resolution obtain charged lepton scale using

- $rightharpoonup J/\psi$ + Upsilon mass for momentum scale
- use Z events to cross check

W production model:

- rightharpoonup Use Z decay to model boson p_T distr.
- ~ QED corrections to W/Z decay
- QCD corrections to W/Z production
- Will use next PDFs fits with CDF W asymmetry measurement

W mass uncertainties

Three fits (MT, PTe, MET)

CDF II preliminary L = 200 pb⁻¹

MET Uncertainty [MeV]	Electrons	Muons	Common
Lepton Scale	30	17	17
Lepton Resolution	9	5	0
Recoil Scale	15	15	15
Recoil Resolution	30	30	30
u _{II} Efficiency	16	13	0
Lepton Removal	16	10	10
Backgrounds	7	11	0
p _T (W)	5	5	5
PDF	13	13	13
QÉD	9	10	9
Total Systematic	54	46	42
Statistical	57	66	0
Total	79	80	42

CDE	ш	preliminary
	•	premimary

 $L = 200 \text{ pb}^{-1}$

p _⊤ Uncertainty [MeV]	Electrons	Muons	Common
Lepton Scale	30	17	17
Lepton Resolution	9	3	0
Recoil Scale	1 7	17	17
Recoil Resolution	3	3	3
u _{II} Efficiency	5	6	O
Lepton Removal	0	O	0
Backgrounds	9	19	0
p _T (W)	9	9	9
PDF	20	20	20
QED	13	13	13
Total Systematic	45	40	35
Statistical	58	66	0
Total	73	77	35

CDF II preliminary

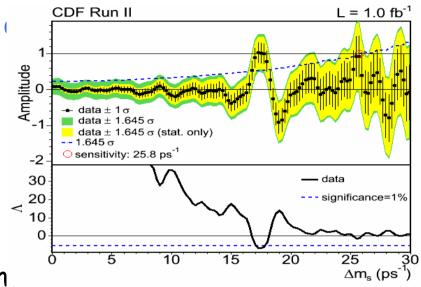
L = 200 pb⁻¹

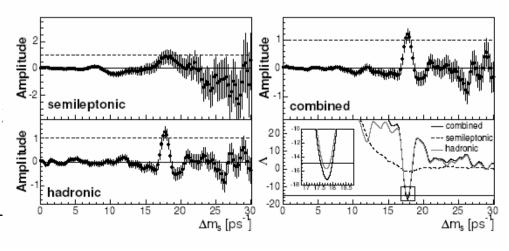
m _T Uncertainty [MeV	Electrons	Muons	Common
Lepton Scale	30	17	17
Lepton Resolution	9	3	0
Recoll Scale	9	9	9
Recoil Resolution	7	7	7
u _{II} Efficiency	3	1	0
Lepton Removal	8	5	5
Backgrounds	8	9	0
p _T (W)	3	3	3
PDF	1 1	11	11
QED	1 1	12	11
Total Systematic	39	27	26
Statistical	48	54	
Total	62	60	26

Giorgio Chiarelli, DIS 07

Bs oscillations

CDF presented "Evidence" few months ago


- $\Delta m_s = 17.31^{+0.33}_{-0.18} (stat)$ ±0.07(syst)
- → Do you remember Top?


Now with a full dataset of < 10. 1fb⁻¹ we present

 \bigcirc Observation of B_s Oscillation

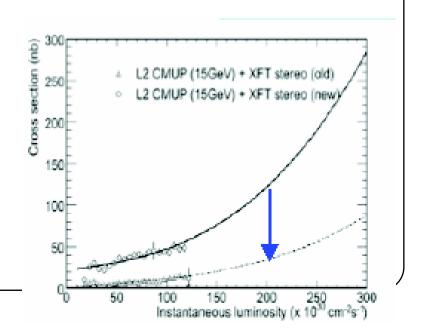
Submitted to PRL on Sept. 18

- $\Delta m_s = 17.77$ ±0.10(stat)±0.07(syst) > 5 σ Observation
- Thigliore selezione
- ~ Aggiunti alcuni canali
- Migliorato il tagging, utilizOS Kaon tagging

Improvements

Official table spring 06

Luminosity Equivalent $(s/\sqrt{b})^2$

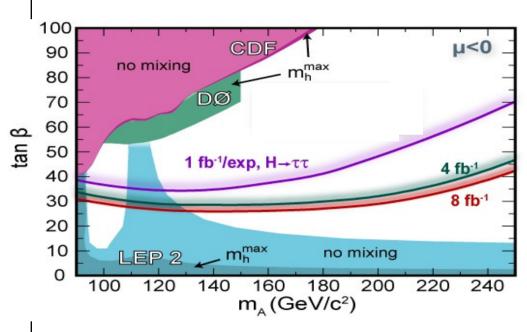

Improvement	WH→lvbb	ZH→ννbb	ZH→llbb
Mass resolution	1.7	1.7	1.7
Continuous b-tag (NN)	15	1.5	1.5
Forward b-tag	1.1	1.1	1.1
Forward leptons	1.3	1.0	1.6
Track-only leptons	1.4	1.0	1.6
NN Selection	1.75	1.75	1.0
WH signal in ZH	1.0	2.7	1.0
Product of above	8.9	13.3	7.2
CDF+DØ combination	2.0	2.0	2.0
All combined	17.8	26.6	14.4

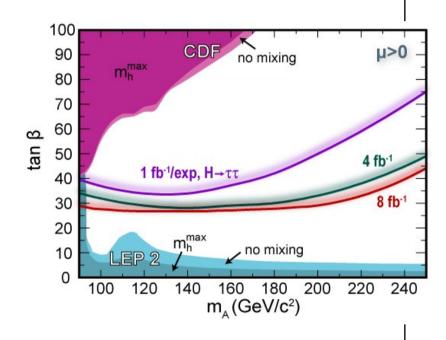
Now we have $H \rightarrow WW(^*)$

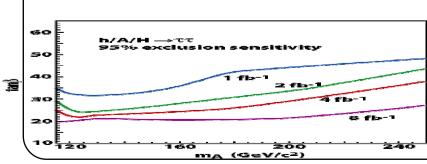
• • • •

However there are some problems to be dealt with:

Trigger for μ at high lum (taken care of by XFT upg.)



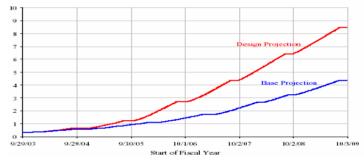

Giorgio Chiarelli, DIS 07


MSSM Higgs

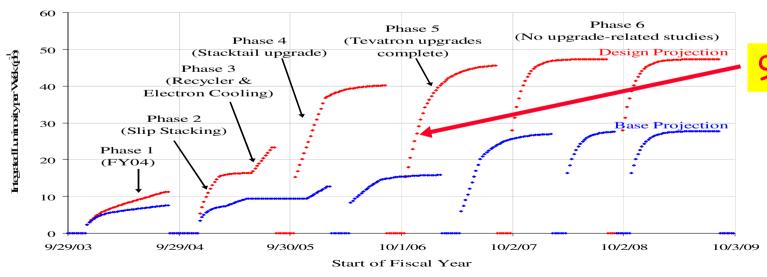
 \bigcirc BF(H \rightarrow $\tau\tau$) is large

 \Rightarrow (benchmark: $Z \rightarrow \tau \tau$)

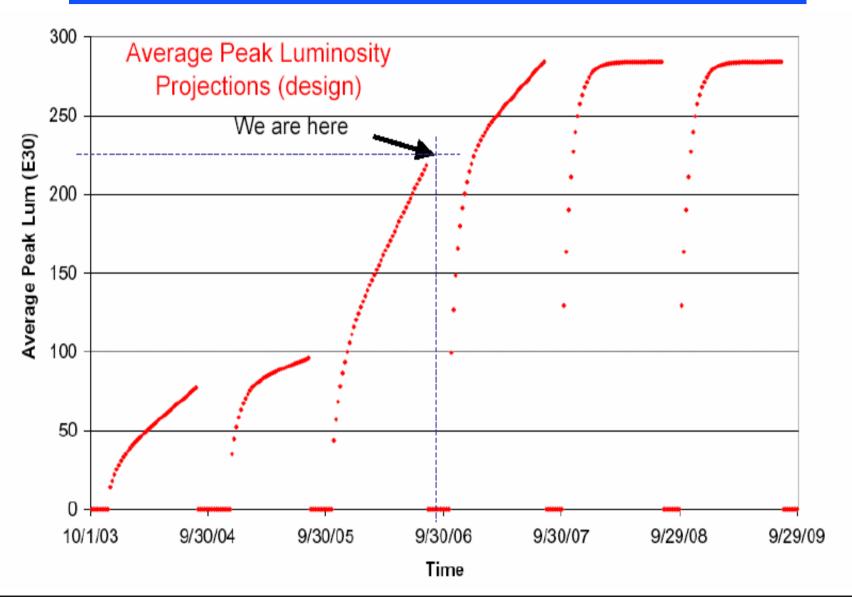
Tevatron is able to search a MSSM higgs for $tan\beta>30$ and $M_{\Delta}<200$ GeV/c²


Giorgio Chiarelli, DIS 07

Slide from 2004



~CDF &DO, designed for 132 ns


⇒will have to work at 396 and ~2.7×10³² cm⁻²s⁻€

	Design	Base
Fiscal		
Year	(fb ⁻¹)	(fb ⁻¹)
FY03	0.33	0.33
FY04	0.64	0.56
FY05	1.2	0.93
FY06	2.7	1.4
FY07	4.4	2.2
FY08	6.4	3.3
FY09	8.5	4.4

How is the Tevatron performing?

B→ hh - II

Con 1 fb-1 si osserva per la prima volta

 $\bigcirc B_s \rightarrow K\pi$

$$BR(B_8^0 \to K^-\pi^+) = (5.0 \pm 0.75 \text{ (stat.)} \pm 1.0 \text{ (syst.)}) \times 10^{-6}$$

→ Misuriamo ACP (SM: ~50%):

$$A_{\rm CP} = \frac{N(\overline{B}_s^0 \to K^+\pi^-) - N(B_s^0 \to K^-\pi^+)}{N(\overline{B}_s^0 \to K^+\pi^-) + N(B_s^0 \to K^-\pi^+)} = 0.39 \pm 0.15 \; (stat.) \pm 0.08 \; (syst.)$$

Two We can test SM predictions:

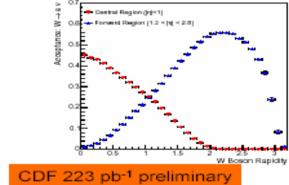
Is observed CP violation in $B_d \rightarrow K\pi$ due to new physics? Check SM prediction of equal violation in $B_s \rightarrow K\pi$, PLB 261(2005), 126

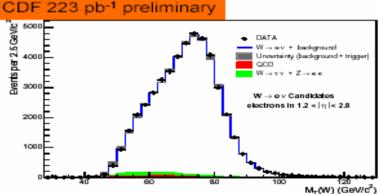
Precision measurements

Prod x-sect for WeZ

 $rightharpoonup \sigma(W)$ at large η , $Z \rightarrow \tau \tau$

Forward W cross section (CDF)

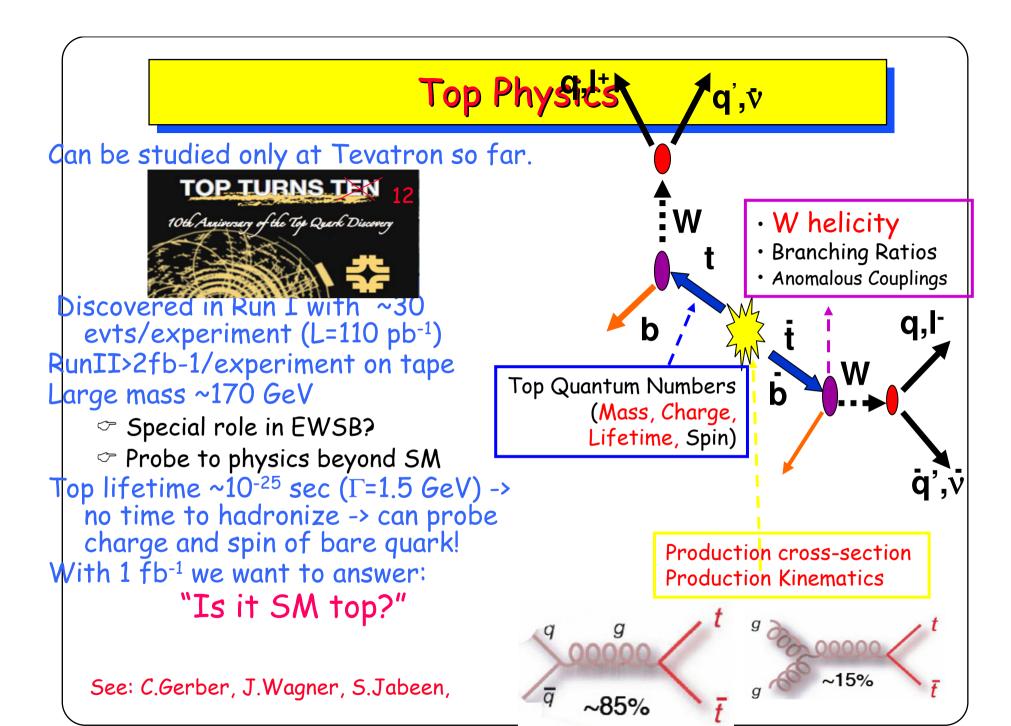

Similar to Z rapidity, a comparison of W cross section from central and forward electrons constrains W production model


 Iongitudinal momentum distribution of W boson is important because acceptance affects couples this to observed transverse momentum distribution

$$R_{\text{exp}}^{central / forward} = 0.925 \pm 0.033$$

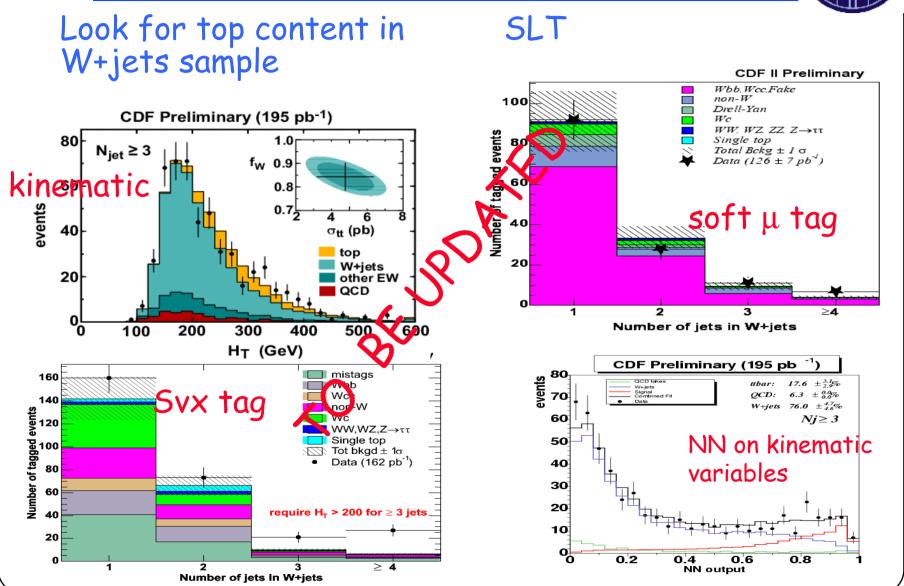
$$R_{CTEO~6.1}^{central/forward} = 0.924 \pm 0.037$$

$$R_{MRST01E}^{central / forward} = 0.941 \pm 0.012$$



8/1/2006

Darien Wood, ICHEP'06, "Electroweak Physics"


31

Top x-section

CDF and DO, 1 fb⁻¹

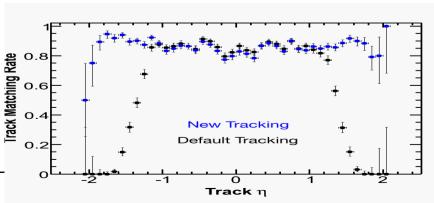
ICHEP 06

Limit/SM Exp. Obs. 10.4 13010.1 10.6

160 3.9 180 7.5 5.8

Tevatron Run II Preliminary 10^{3} 95% CL Limit/SM CDF: 320 pb⁻¹ CDF: 1 fb WH→lvbb ZH→Hb̄b -D0: 320-389 pb WH→WWW CDE: 194 pb WH→WWW H→WW^(*)→lvlv D0; 363-384 pb⁻¹ $H\rightarrow WW^{(*)}\rightarrow lvlv$ 10 WH→lvы D0: 378 pb. CDF+D0 Combined July 26, 2006 180 $m_{H}^{}$ (GeV) 190 200 140 150 160 110 120 130 170

m_H (GeV/c²)

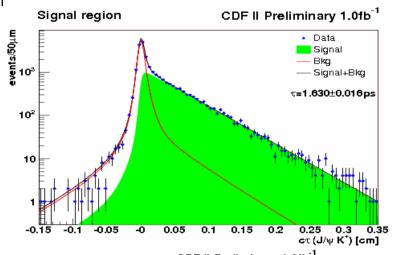

Can we improve?

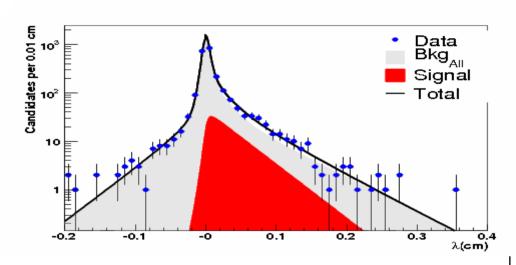
- → Optimize selection ⇒Better tools
- Optimization of b tagging
- ¬ Z→bb (energy scale)
- Tracking..

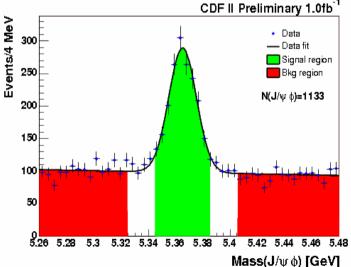
Un esempio concreto

⇒"Default tracking" capito (misure fisica)

→ Abbiamo capito come riguadagnare eff




B Physics/Lifetimes



CDF: fit to mass and lifetime

D0: Λ_B in exclusive

B hadron	CDF measurement	
B+	1.630±0.016(stat.)± 0.011 (syst.)	
B ⁰	1.551±0.019(stat.)±0.011 (syst.)	
Λ_{b}	1.580±0.077(stat.)±0.012 (syst.)	
B_s	1.494±0.054(stat.)±0.009	

 $\tau(B^{+})/\tau(B^{0}) = 1.051 \pm 0.023 \pm 0.004 \text{ (syst.)}$

 $\tau(B_s)/\tau(B^0) = 0.963 \pm 0.047 \pm 0.005$ (syst.)

 $\tau(\Lambda_B)/\tau(B^0) = 1.018 \pm 0.062 \pm 0.007$ (syst.)

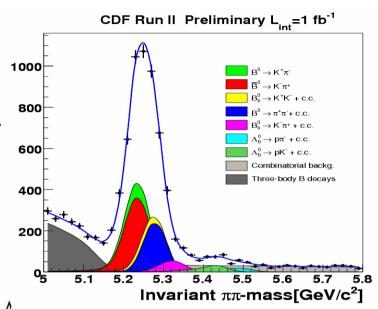
Giorgio Chiarelli, DIS 07

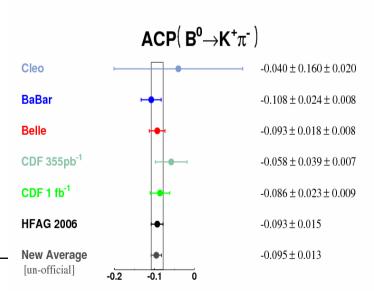
Rare decays

Trigger capability on

Irigger capability on B
$$\rightarrow$$
 hh allows study of rare decays
$$A_{CP} = \frac{N(\overline{B}^0 \to K^-\pi^+) - N(B^0 \to K^+\pi^-)}{N(\overline{B}^0 \to K^-\pi^+) + N(B^0 \to K^+\pi^-)} = -0.086 \pm 0.023 \, (stat.) \pm 0.009 \, (sy)$$

$$\Rightarrow \text{For the first time measured}$$

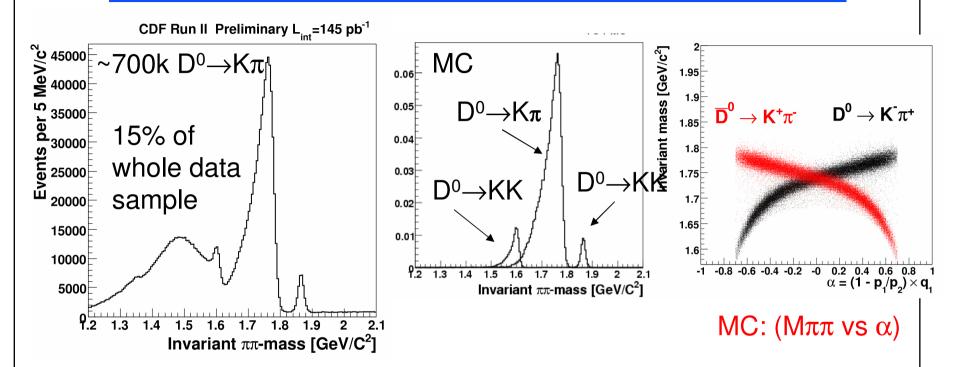

$$BR(B_8^0 \to K^- \pi^+) = (5.0 \pm 0.75 \text{ (stat.)} \pm 1.0 \text{ (syst.)}) \times 10^{-6}$$


and its ACP:

$$A_{\rm CP} = \frac{N(\overline{B}_s^0 \to K^+\pi^-) - N(B_s^0 \to K^-\pi^+)}{N(\overline{B}_s^0 \to K^+\pi^-) + N(B_s^0 \to K^-\pi^+)} = 0.39 \pm 0.15 \; (stat.) \pm 0.08 \; (syst.)$$

Testing the SM in this sector?

Giorgio Chiarelli, DIS 07



Systematics: $A_{CP}(B^0 \rightarrow Kpi)$

source	shift wrt centra
mass scale	0.0004
asymmetric momentum-p.d.f	0.0001
$d\mathbf{E}/d\mathbf{x}$	0.0064
input masses	0.0054
combinatorial background model	0.0027
momentum background model	0.0007
MC statistics	_
charge asymmetry	0.0014
$\Delta\Gamma_s/\Gamma_s$ Standard Model	_
lifetime	_
isolation efficiency	_
XFT-bias correction	_
TOTAL (sum in quadrature)	0.009

$A_{CP}(D^0 \rightarrow K^-\pi^+)$

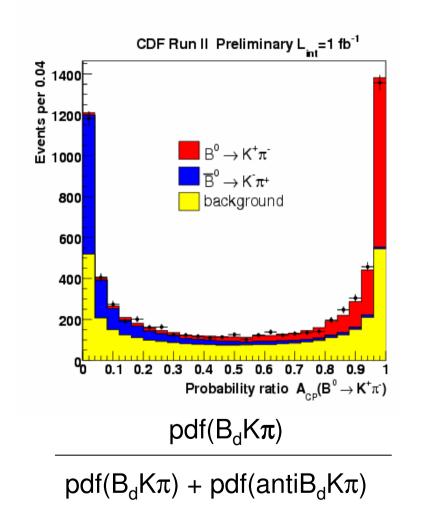
Using the same analysis strategy of Bhh we fit the direct $A_{CP}(D^0 \rightarrow K\pi)$ which is expected to be very small in the SM and used it to check our understanding of charge biases. Already the kinematics separates D^0 from anti D^0 . We measured:

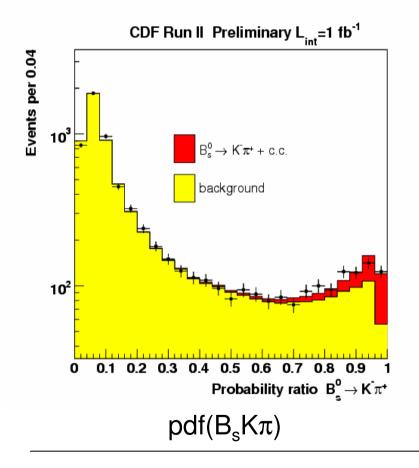
$$A_{\text{CP}} = \frac{N_{\text{raw}}(\overline{D}^0 \to K^+\pi^-) \cdot \frac{\varepsilon(K^-\pi^+)}{\varepsilon(K^+\pi^-)} - N_{\text{raw}}(D^0 \to K^-\pi^+)}{N_{\text{raw}}(\overline{D}^0 \to K^+\pi^-) \cdot \frac{\varepsilon(K^-\pi^+)}{\varepsilon(K^+\pi^-)} + N_{\text{raw}}(D^0 \to K^-\pi^+)} = -0.00059 \pm 0.00136 \; (stat.) \pm 0.0022 \; (syst).$$
Only kinematic fit

Cross-check of $D^0 \rightarrow K\pi$ asymmetry with dE/dx

To check the dE/dx systematics we performed an A_{CP} fit on a $D^0 \rightarrow K\pi$ sample. We did two fits :kinematic-only and dE/dx-only.

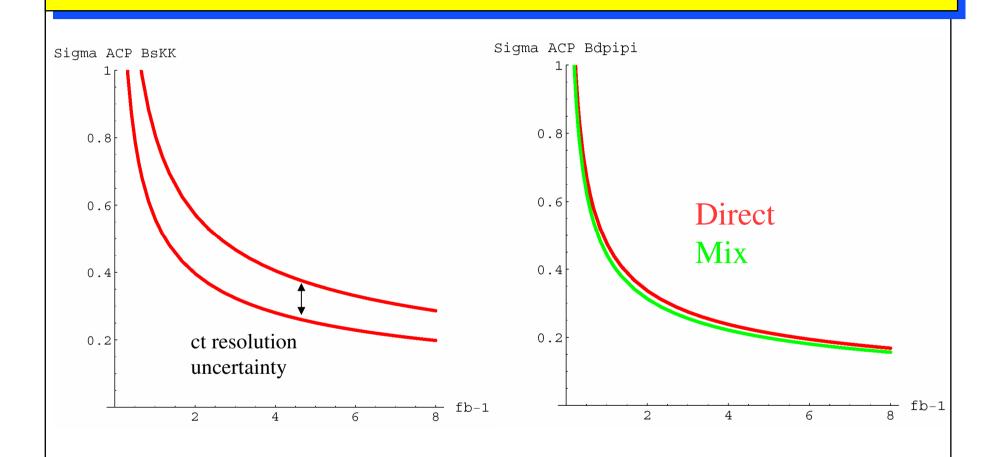
Kinematic-only


$$\frac{N_{\rm raw}(\overline{D}^0 \to K^+\pi^-) - N_{\rm raw}(D^0 \to K^-\pi^+)}{N_{\rm raw}(\overline{D}^0 \to K^+\pi^-) + N_{\rm raw}(D^0 \to K^-\pi^+)} = 0.00823 \pm 0.00136$$


$$\frac{N_{\text{raw}}(\overline{D}^0 \to K^+\pi^-) - N_{\text{raw}}(D^0 \to K^-\pi^+)}{N_{\text{raw}}(\overline{D}^0 \to K^+\pi^-) + N_{\text{raw}}(D^0 \to K^-\pi^+)} = 0.00207 \pm 0.00157$$

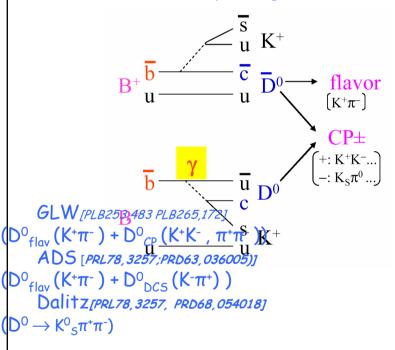
In the D⁰ \rightarrow K π we obtain A_{CP}(kine)-A_{CP}(dE/dx) = 0.00616

The discrepancy between the two fits is within our quoted dE/dx systematics on direct $A_{CP}(B^0 \rightarrow K\pi)$: 0.0064.


Probability ratio for $A_{CP}(B^0 \rightarrow K^{\dagger}\pi^{-})$ and $B^0_s \rightarrow K^{-}\pi^{+}$

 $pdf(B_sK\pi) + pdf(other signals+bckg)$

Expectations for $Bs \rightarrow K^+K^-$ asymmetries



Combining Bs->KK and Bd-> $\pi\pi$ asymmetries lead to a determination of γ via flavor-SU(3) relationship (see next)

Measurement of γ at tree-level

Asymmetries in B⁺ \rightarrow D⁰ K⁺ are a very theoretically clean way to measure γ (1%) This is a reference quantity for comparing other γ determinations in search for NP

Several methods, depending on D^o modes:

Measurements exist at B factories for all 3 CDF can do the same measurements; in additagging)

Gronau PLB 557, 198: Extract y from

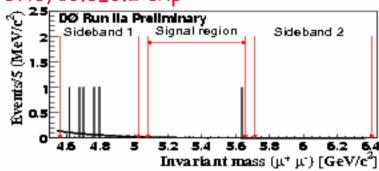
Gronau PLB 557, 198: Extract
$$\gamma$$
 from
$$R_{CP^{\pm}/\text{flav}} \equiv 2 \frac{\sum_{B^{+},B^{-}} \Gamma(B \to D_{\text{flav}}^{0} K)}{\sum_{B^{+},B^{-}} \Gamma(B \to D_{\text{flav}}^{0} K)} \text{Ratio between amplitudes:}$$

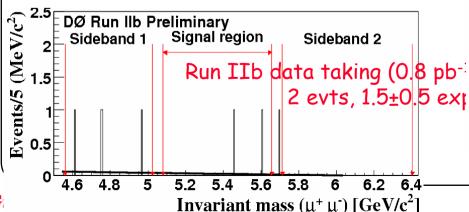
$$= 1 + \mathbf{r}_{\text{DK}}^{2} + 2 \mathbf{r}_{\text{DK}} \cos \gamma \cos \delta$$

$$A_{CP^{\pm}} \equiv \frac{\Gamma(B^{-} \to D_{CP^{\pm}}^{0} K^{-}) - \Gamma(B^{+} \to D_{CP^{\pm}}^{0} K^{+})}{\cdots + \cdots}$$

$$= \pm 2 \mathbf{r}_{\text{DK}} \sin \gamma \sin \delta / R_{CP^{+}}$$
Measure for each D \to f:
$$R_{f}^{K/\pi} \equiv \frac{\sum_{B^{+},B^{-}} \Gamma(B \to D_{f}^{0} K)}{\sum_{\Gamma} \Gamma(B \to D_{f}^{0} \pi)}$$

Then $R_{CP\pm/flav} = R_{CP\pm}^{K/\pi} / R_{flav}^{K/\pi}$

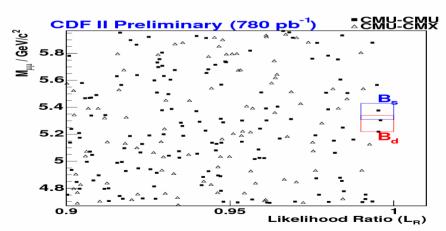

Bd, Bs → μμ rare decays



DO new result with 2 fb-1

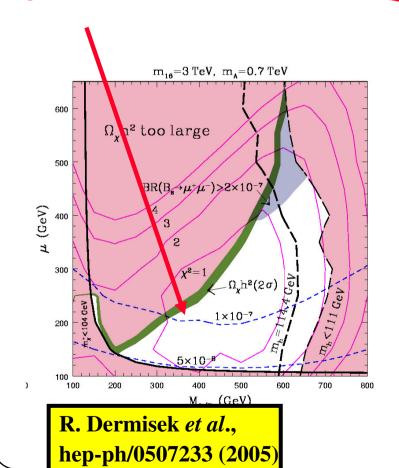
- \bigcirc 3 events (2.3+-0.7 exp.)
- ~ <9.3(7.5)10⁻⁸@95(90)% CL
- The Not yet combined with CDF

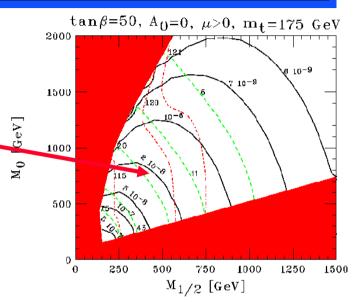
Run IIa data taking (1.3 pb⁻¹) 1 evts, 10.8±0.2 exp

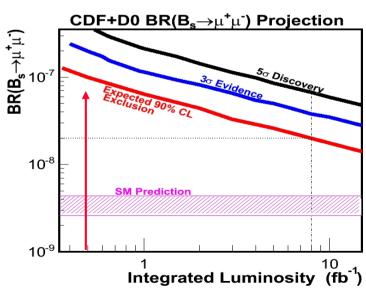


CDF searches for B_s and B_d decays into dimuons

- ← Expected at O(10-9) level
- 0.8 fb-1 CL limits:
 - \Rightarrow B_s<10(8) 10⁻⁸ 95(90) %
 - \Rightarrow B_d<2.3(2) 10⁻⁸ 95(90) %

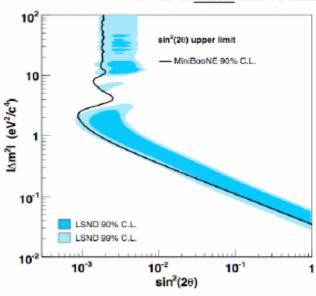

⇒To be updated soon..




SUSY limits-examples

B_d 2.3(2) 10⁻⁸@95(90)%CL,

B_s<9.3(7.5) 10⁻⁸ @95 (90)% CL

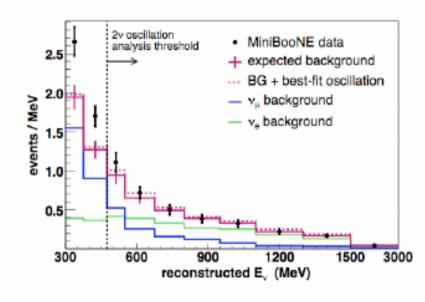


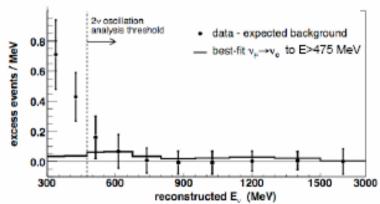
MiniBoone

The result of the $\nu_{\mu} \rightarrow \nu_{e}$ appearance-only analysis is a <u>limit</u> on oscillations:

 χ^2 probability, null hypothesis: 93%

Energy fit: $475 < E_v^{QE} < 3000 \text{ MeV}$


Miniboone


As planned before opening the box....
Report the full range: 300<E_vQE<3000 MeV

96 ± 17 ± 20 events above background, for 300<E_vQE<475MeV

Deviation: 3.7σ

Background-subtracted:

